
WIKI Les Portes Logiques
Adresse de l'article : http://lesporteslogiques.net/wiki/openatelier/projet/platine_sequenceur?rev=1601042321
Article mis à jour le : 2020/09/25 15:58 / Imprimé le 2026/02/07 02:10

http://lesporteslogiques.net/wiki/ 1 / 7

arduino, audio, séquenceur, optique, em

Page créée le 9 septembre 2020

Platine séquenceur
Transformation d'une platine disque en séquenceur optique : des capteurs posés le long du bras de la platine mesurent la
lumière qu'ils reçoivent. Le disque est en carton/papier sur lequel sont tracées des formes au feutre.

Platine disque
La platine est une Pioneer PL-X11Z. Elle est conçu pour être alimentée en étant connectée à la chaine hifi par un mini-jack,
en 12V. Elle fonctionne mais il manque la courroie. Dans un premier temps, on remplace la courroie manquante par un
élastique assez grand, à section carrée.

Petits calculs

Un tour complet du plateau s'effectue en 1333.33 millisecondes (en position 45 tours/minute) et 1818 millisecondes en
position 33 tours/minute Avec un disque de 30 cm, la circonférence extérieure est de 94 cm (2 * pi * r)

En 33 tours / minute :
Si on divise le disque en 4 parties égales, chacune occupe 454 millisecondes soit un tempo de 132 BPM (60 / 0.454ms), en
deux parties égales : BPM 66, etc.

En 45 tours minute :
4 parties : chacune 333.33 ms soit un BPM de 180 / 2 parties = BPM de 90

Système
bras de la platine avec capteur → multiplexeur → arduino -(usb-série)→ ordi avec patch pure data

Premier prototype

http://lesporteslogiques.net/wiki/tag/arduino?do=showtag&tag=arduino
http://lesporteslogiques.net/wiki/tag/audio?do=showtag&tag=audio
http://lesporteslogiques.net/wiki/tag/sequenceur?do=showtag&tag=s%C3%A9quenceur
http://lesporteslogiques.net/wiki/tag/optique?do=showtag&tag=optique
http://lesporteslogiques.net/wiki/tag/em?do=showtag&tag=em
http://lesporteslogiques.net/wiki/_media/openatelier/projet/platine_sequenceur/prototype_001_dessous.jpg
https://fr.wikipedia.org/wiki/Battement_par_minute
http://lesporteslogiques.net/wiki/_media/openatelier/projet/platine_sequenceur/prototype_001_vue_generale.jpg
http://lesporteslogiques.net/wiki/_media/openatelier/projet/platine_sequenceur/prototype_001_bras_lecteur.jpg
http://lesporteslogiques.net/wiki/openatelier/projet/platine_sequenceur?rev=1601042321

http://lesporteslogiques.net/wiki/ 2 / 7

Le premier montage utilise 8 photorésistances, à chacune d'entre elle est associée une led pour fournir un éclairage
homogène.
Problème : les photorésistances sont un peu lentes

Schéma

Second prototype
Dans cette version, les photorésistances sont remplacées par des phototransistors pour augmenter la vitesse de détection,
le circuit électronique est adapté en conséquence. Deux pièces en impression 3D sont utilisées : la première pour maintenir
le bras (dont le mécanisme de retour automatique a été désactivé) et la seconde pour fixer les composants.
A l'origine la platine est alimentée en 12V par la chaîne hifi, après modification nous avons installé une alimentation directe
par bloc secteur / transfo 12V et un interrupteur de marche-arrêt.

Schéma

Dans cette version, 6 phototransistors sont utilisés, sans multiplexeur. A chaque phototransistor est associé deux
résistances (en reprenant les valeurs définies dans le projet de Yunchi Luo et Mengliang Yu de l'université Cornell, voir
sources en bas de page)

Pièces

Repose-bras (ou quelque chose comme ça)

http://lesporteslogiques.net/wiki/_media/openatelier/projet/platine_sequenceur/prototype_001_circuit.png
http://lesporteslogiques.net/wiki/_media/openatelier/projet/platine_sequenceur/prototype_002_vue_generale.jpg
http://lesporteslogiques.net/wiki/_media/openatelier/projet/platine_sequenceur/prototype_002_circuit.png

http://lesporteslogiques.net/wiki/ 3 / 7

platine_sequenceur_porte_bras.stl

platine_sequenceur_porte_bras.scad (cliquer pour afficher le code)

platine_sequenceur_porte_bras.scad

/*
 Élément pour la platine séquenceur
 Quimper, La Baleine, 23 septembre 2020
 OpenSCAD version 2019.05 @ kirin / Debian 9.5
*/
difference() {

 union() {
 cylinder(h=6, r=5, center=true, $fn=36);
 translate([0,0,-3]) cylinder(h=1.5, r=12, center=true, $fn=72);
 translate([-5,0,1]) cube(size=[10,19,2]);
 translate([-5,4.7,1]) cube(size=[10,2,7]);
 translate([-5,17,1]) cube(size=[10,2,7]);
 }
 translate([0,0,-0.4]) cylinder(h=7, r=3.9, center=true, $fn=36);
}

Adaptateur pour les capteurs

platine_sequenceur_bras_porte_capteur.stl

platine_sequenceur_bras_porte_capteur.scad (cliquer pour afficher le code)

platine_sequenceur_bras_porte_capteur.scad

/*
 Élément pour la platine séquenceur
 bras porte capteur
 Quimper, La Baleine, 23 septembre 2020
 OpenSCAD version 2019.05 @ kirin / Debian 9.5
*/

difference() {
 color("Yellow") {
 difference() {
 translate([-10,-7.5,0]) cube(size=[12,15,100]);

 #union() {
 translate([0,0,10]) cube(size=[30,30,10], center=true);
 translate([0,0,25]) cube(size=[30,30,10], center=true);
 translate([0,0,40]) cube(size=[30,30,10], center=true);
 translate([0,0,55]) cube(size=[30,30,10], center=true);
 translate([0,0,70]) cube(size=[30,30,10], center=true);
 translate([0,0,85]) cube(size=[30,30,10], center=true);
 }
 }
 translate([-12,-7.5,-70]) cube(size=[3,15,170]);
 color("Lime") translate([-12,-7.5,0]) cube(size=[13.5,3,100]);
 color("Lime") translate([-12,4.5,0]) cube(size=[13.5,3,100]);

 }
 # color("Cyan") {
 translate([0,0,-1]) cylinder(h=102, r=4.5, center=false, $fn=36);
 translate([0,-4.5,-1]) cube(size=[9,9,102]);
 }

http://lesporteslogiques.net/wiki/_media/openatelier/projet/platine_sequenceur/platine_sequenceur_porte_bras.png
http://lesporteslogiques.net/wiki/_export/code/openatelier/projet/platine_sequenceur?codeblock=0
http://lesporteslogiques.net/wiki/_media/openatelier/projet/platine_sequenceur/platine_sequenceur_bras_porte_capteur.png
http://lesporteslogiques.net/wiki/_export/code/openatelier/projet/platine_sequenceur?codeblock=1

http://lesporteslogiques.net/wiki/ 4 / 7

}
color("Blue") translate([-12,-9.49,-56]) cube(size=[12,2,8]);
color("Blue") translate([-12,7.49,-56]) cube(size=[12,2,8]);

* color("Green") translate([0,4.5,0]) rotate([0, 0, -45]) translate([0, 1, 0]) cube(size=[1,10,80]);
* color("Green") translate([0.5,-3.5,0]) rotate([0, 0, -135]) cube(size=[1,13,100]);

/* barre sans trou
color("Red") translate([3.25,-10.4,50]) rotate([0, 0, 30]) cube(size=[1,13,100],center=true);
*/

color("Red") translate([6.5,-16.85,0]) rotate([0, 0, 30]) plaque_phototransistor();

color("Red") translate([3.25,10.4,50])rotate([0, 0, 150]) cube(size=[1,13,100],center=true);

module plaque_phototransistor() {
 difference() {
 cube(size=[1,13,100],center=false);
 #union() {
 rotate([0,90,0]) translate([-6,5,0]) cylinder(h=3, r=0.6, center=true, $fn=8);
 rotate([0,90,0]) translate([-6,8,0]) cylinder(h=3, r=0.6, center=true, $fn=8);

 rotate([0,90,0]) translate([-22.5,5,0]) cylinder(h=3, r=0.6, center=true, $fn=8);
 rotate([0,90,0]) translate([-22.5,8,0]) cylinder(h=3, r=0.6, center=true, $fn=8);

 rotate([0,90,0]) translate([-39,5,0]) cylinder(h=3, r=0.6, center=true, $fn=8);
 rotate([0,90,0]) translate([-39,8,0]) cylinder(h=3, r=0.6, center=true, $fn=8);

 rotate([0,90,0]) translate([-55.5,5,0]) cylinder(h=3, r=0.6, center=true, $fn=8);
 rotate([0,90,0]) translate([-55.5,8,0]) cylinder(h=3, r=0.6, center=true, $fn=8);

 rotate([0,90,0]) translate([-72,5,0]) cylinder(h=3, r=0.6, center=true, $fn=8);
 rotate([0,90,0]) translate([-72,8,0]) cylinder(h=3, r=0.6, center=true, $fn=8);

 rotate([0,90,0]) translate([-89,5,0]) cylinder(h=3, r=0.6, center=true, $fn=8);
 rotate([0,90,0]) translate([-89,8,0]) cylinder(h=3, r=0.6, center=true, $fn=8);
 }
 }
}

Code d'envoi

Le code arduino comprend : une phase de calibration, la mesure des capteurs et l'envoi des données vers l'ordinateur, en
série

platine_sequenceur_003.ino (cliquer pour afficher le code)

platine_sequenceur_003.ino

/*
 * Platine sequenceur / prototype 002
 * http://lesporteslogiques.net/wiki/openatelier/projet/platine_sequenceur
 * Quimper, La baleine, 24 sept 2020
 * Debian 9.5 @ kirin / arduino 1.8.5
 * + library Adafruit NeoPixel 1.1.3 https://github.com/adafruit/Adafruit_NeoPixel
 *
 * CIRCUIT
 * - 6 phototransistors reliés aux entrées analogiques
 * - ruban de 8 leds RGB
 *
 * MODES DE FONCTIONNEMENT (à régler dans le code)
 * Mode de réception des données (les données envoyées ne sont pas formatées de la même manière)
 * 0 pour le mode de test (traceur serie de l'arduino IDE)
 * 1 pour le mode de réception dans pure data
 *
 * VERSIONS
 * 001 : (prototype 001, photorésistances) envoi de valeurs brutes en série
 * 002 : (prototype 001, photorésistances) ajout des leds + calibration
 * 003 : (prototype 002, phototransistors)
 *
 * TODO
 * ajouter un bouton de calibration
 * ajouter un switch de mode 0 ou 1
 * ajouter une led (clignote = calibration, éteinte mode 0, allumée mode 1)
 *
 * RESSOURCES
 * - traitements de lissage des données : https://www.openprocessing.org/sketch/686436
 */

int MODE = 0;

// Inclure les bibliothèques de fonction (libraries) nécessaires
#include <Adafruit_NeoPixel.h>
#ifdef __AVR__
 #include <avr/power.h>
#endif

http://lesporteslogiques.net/wiki/_export/code/openatelier/projet/platine_sequenceur?codeblock=2

http://lesporteslogiques.net/wiki/ 5 / 7

#define BROCHE_PT1 A1 // Broche reliée au phototransistor 1
#define BROCHE_PT2 A2 // Broche reliée au phototransistor 2
#define BROCHE_PT3 A3 // Broche reliée au phototransistor 3
#define BROCHE_PT4 A4 // Broche reliée au phototransistor 4
#define BROCHE_PT5 A5 // Broche reliée au phototransistor 5
#define BROCHE_PT6 A6 // Broche reliée au phototransistor 6

#define BROCHE_LED 5 // A quelle broche est relié le ruban de LEDs ?
#define NUMPIXELS 6 // Combien de LEDs sur le ruban ?

// Créer l'objet correspondant au ruban de LEDs
Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, BROCHE_LED, NEO_RGB + NEO_KHZ800);
int luminosite = 255;

int v1b, v2b, v3b, v4b, v5b, v6b; // valeurs brutes
int v1l, v2l, v3l, v4l, v5l, v6l; // valeurs lissées
int v1c, v2c, v3c, v4c, v5c, v6c; // valeurs calibrées

boolean CALIBRATION = true;
long v1s, v2s, v3s, v4s, v5s, v6s; // sommes utilisées pour la calibration
int v1i, v2i, v3i, v4i, v5i, v6i; // valeurs d'initialisation définies pendant la phase de calibration
int calibration_start; // démarrage de la calibration à cette milliseconde!
int calibration_compteur = 0; // utlisé pour le calcul réactualisé des moyennes

void setup() {

 pixels.begin(); // Initialiser l'objet du ruban de leds

 Serial.begin(57600);

 // Fixer la luminosité pour l'ensemble du ruban
 pixels.setBrightness(luminosite);
 // Définir une couleur identique pour chaque LED, la LED 0 est la plus proche des broches
 for (int i = 0; i < 6; i++) {
 pixels.setPixelColor(i, pixels.Color(255, 255, 255));
 }
 pixels.show();

 delay(500);
 calibration_start = millis();

}

void loop () {

 if (CALIBRATION) {
 calibration_compteur ++;
 if (millis() - calibration_start > 3000) { // L'étape de calibration dure 3 secondes
 CALIBRATION = false;
 v1i = (int)(v1s / (calibration_compteur - 1));
 v2i = (int)(v2s / (calibration_compteur - 1));
 v3i = (int)(v3s / (calibration_compteur - 1));
 v4i = (int)(v4s / (calibration_compteur - 1));
 v5i = (int)(v5s / (calibration_compteur - 1));
 v6i = (int)(v6s / (calibration_compteur - 1));
 v1l = v1i;
 v2l = v2i;
 v3l = v3i;
 v4l = v4i;
 v5l = v5i;
 v6l = v6i;

 } else {
 v1s += analogRead(BROCHE_PT1);
 delayMicroseconds(3);
 v2s += analogRead(BROCHE_PT2);
 delayMicroseconds(3);
 v3s += analogRead(BROCHE_PT3);
 delayMicroseconds(3);
 v4s += analogRead(BROCHE_PT4);
 delayMicroseconds(3);
 v5s += analogRead(BROCHE_PT5);
 delayMicroseconds(3);
 v6s += analogRead(BROCHE_PT6);
 delayMicroseconds(3);
 }
 }

 if (!CALIBRATION) {

 // Récupérer les valeurs actuelles
 v1b = analogRead(BROCHE_PT1);
 delayMicroseconds(3);
 v2b = analogRead(BROCHE_PT2);
 delayMicroseconds(3);
 v3b = analogRead(BROCHE_PT3);
 delayMicroseconds(3);
 v4b = analogRead(BROCHE_PT4);
 delayMicroseconds(3);
 v5b = analogRead(BROCHE_PT5);
 delayMicroseconds(3);

http://lesporteslogiques.net/wiki/ 6 / 7

 v6b = analogRead(BROCHE_PT6);
 delayMicroseconds(3);

 v1l = (0.85 * v1l) + (0.15 * v1b) ;
 v2l = (0.85 * v2l) + (0.15 * v2b) ;
 v3l = (0.85 * v3l) + (0.15 * v3b) ;
 v4l = (0.85 * v4l) + (0.15 * v4b) ;
 v5l = (0.85 * v5l) + (0.15 * v5b) ;
 v6l = (0.85 * v6l) + (0.15 * v6b) ;

 v1c = (v1l - v1i) * -1;
 v2c = (v2l - v2i) * -1;
 v3c = (v3l - v3i) * -1;
 v4c = (v4l - v4i) * -1;
 v5c = (v5l - v5i) * -1;
 v6c = (v6l - v6i) * -1;

 if (MODE == 0) {

 Serial.print(v1c);
 Serial.print(",");
 Serial.print(v2c);
 Serial.print(",");
 Serial.print(v3c);
 Serial.print(",");
 Serial.print(v4c);
 Serial.print(",");
 Serial.print(v5c);
 Serial.print(",");
 Serial.println(v6c);
 //Serial.println("");
 }
 if (MODE == 1) {
 Serial.print("photores ");

 Serial.print(v1c);
 Serial.print(" ");
 Serial.print(v2c);
 Serial.print(" ");
 Serial.print(v3c);
 Serial.print(" ");
 Serial.print(v4c);
 Serial.print(" ");
 Serial.print(v5c);
 Serial.print(" ");
 Serial.println(v6c);

 }
 delay(5);
 }
}

Code réception

Le code pure data récupère les données série, et modifie le son en conséquence

Problèmes, améliorations, etc.

Le signal des phototransistors est très parasité
→ alimenter séparément les leds : testé, et cest beaucoup mieux
→ utiliser la source de tension de référence 1.1V incluse dans l'arduino pour la capture analogique (plutôt que VCC)
→ traiter le signal (moyenne, etc) et envoyer moins de messages série
→ mesurer les temps pour trouver un timing précis

Ajouter quelques composants complémentaires

un bouton pour lancer une calibration à n'importe quel moment
un switch pour basculer de mode “traceur série arduino” / “réception pure data”
une led pour indiquer tout ça

Sources et ressources
Datasheet du phototransistor Osram Opto SFH 309 :

phototransistor_osram-opto_sfh309.pdf

Utilisation des phototransistors, un bon exemple :

http://lesporteslogiques.net/wiki/_media/openatelier/projet/platine_sequenceur/phototransistor_osram-opto_sfh309.pdf

http://lesporteslogiques.net/wiki/ 7 / 7

https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2010/yl477_my288/yl477_my288/index.html

Article extrait de : http://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://lesporteslogiques.net/wiki/openatelier/projet/platine_sequenceur?rev=1601042321
Article mis à jour: 2020/09/25 15:58

https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2010/yl477_my288/yl477_my288/index.html
http://lesporteslogiques.net/wiki/
http://lesporteslogiques.net/wiki/openatelier/projet/platine_sequenceur?rev=1601042321

	Platine séquenceur
	Platine disque
	Système
	Premier prototype
	Schéma

	Second prototype
	Schéma
	Pièces
	Repose-bras (ou quelque chose comme ça)
	Adaptateur pour les capteurs

	Code d'envoi
	Code réception
	Problèmes, améliorations, etc.

	Sources et ressources

