WIKI Les Portes Logiques
Adresse de I'article : http://lesporteslogiques.net/wiki/openatelier/projet/sonorisation_hache_lande?rev=1583341319
Article mis a jour le : 2020/03/04 18:01 / Imprimé le 2026/02/07 02:12

arduino, audio, lecteur-son, em

Sonorisation d'un hache lande

/"\ en cours de rédaction 3 mars 2020

Ce projet a été utilisé dans I'exposition «Landes» a I'écomusée des Monts d'Arrée en 2018. La roue du hache lande est
utilisée pour lancer la lecture d'une bande sonore : un chant du travail aux champs. Pour cela, un disque en carton avec des
aimants intégrés est placé autour de I'axe du hache lande. En tournant la roue d'un demi tour, les aimants passent devant
un capteur a effet Hall, quand plusieurs aimants sont détectés, la lecture démarre.

Pour ce projet, nous avons essayé plusieurs modules capables de lire des fichiers sons sur carte micro SD. Plusieurs choses
les différencient : sortie amplifiée ou pas, circuit intégré de décodage, colt, bibliotheque associée. Notre choix s'est porté
sur le module open-smart serial mp3 player A. La communicaton avec arduino se fait par un port série logiciel, de simples
commandes sont envoyées sans utiliser de bibliothéque

Module de lecture MP3 Open-smart serial mp3 player A

LPEN-SMART
" SRR ok

L
N\

doc : open-smart serial MP3 player A manual v1.1 (pdf)

Difficile de dire quel puce est utilisée sur ce circuit, les inscriptions ont été effacée, il s'agit peut-étre d'une YX6100-16S ou
YX6200-16S de Flyron Technology, ou d'une WT2003-16S de Shenzen Waytronic Electronics, ou d'un JQ8400TF ! En tout cas,
le déclenchement de la lecture se fait en envoyant un message correctement formaté par le port série d'arduino vers le
module mp3. Le manuel donne le détail des différents modes de commande possible et des messages que I'on peut
envoyer.

Dans notre cas, il y a un seul son a lire quand les conditions sont remplies, cad. qu'un demi tour de la roue a été détecté. La
lecture se lance uniquement si elle n'est pas déja lancée, pour cela on bloque I'arduino en utilisant la fonction delay()
ajustée a la durée du son a lire.

Code final

circuit_expo_landes_hache_lande_opensmart.ino (cliquer pour afficher le code)

circuit_expo_landes_hache_lande_opensmart.ino

/* Sonorisation du hache lande
* Quimper, 22 avril 2018, pierre <at> lesporteslogiques.net
*
* carte arduino nano robotdyn.com / arduino 1.8.2 @ zibu, debian 7
*
* le circuit utilise un capteur a effet Hall 49E (sortie analogique)
* et un lecteur de MP3 série open smart "Serial MP3 Player A"

* /

boolean DEBUG = true // afficher les messages de débugage sur le port série hardware
#include <SoftwareSerial.h>
const byte BROCHE RX

8
8
const byte BROCHE TX 9
A

const byte BROCHE_HALL 6

http://lesporteslogiques.net/wiki/ 1/4

http://lesporteslogiques.net/wiki/tag/arduino?do=showtag&tag=arduino
http://lesporteslogiques.net/wiki/tag/audio?do=showtag&tag=audio
http://lesporteslogiques.net/wiki/tag/lecteur-son?do=showtag&tag=lecteur-son
http://lesporteslogiques.net/wiki/tag/em?do=showtag&tag=em
http://www.ecomusee-monts-arree.fr/
http://lesporteslogiques.net/wiki/_media/openatelier/projet/sonorisation_hache_lande/open-smart_serial_mp3_player_a.jpg
http://emoc.org/materiel/__MODULES/mp3_module_open-smart_serial_mp3_player_A/Serial%20MP3%20Player%20A%20v1.1%20Manual.pdf
http://www.flyrontech.com/eproducts/?id=63
http://www.flyrontech.com/eproducts/?id=63
https://cdn.sparkfun.com/assets/7/c/0/c/6/WT2003S-16S_Chip_V1.03.pdf
http://lesporteslogiques.net/wiki/_export/code/openatelier/projet/sonorisation_hache_lande?codeblock=0
http://lesporteslogiques.net/wiki/openatelier/projet/sonorisation_hache_lande?rev=1583341319

0; // conserve le nombre d'aimants détectés pour mesurer la rotation

byte aimant_compteur

byte aimant_declenche = 4; // Combien d'aimants pour déclencher la lecture ?
boolean aimant_etat; // état actuel de 1'aimant

boolean aimant_etat precedent; // état précédent de 1'aimant

long last_aimant =0; // Conserve le moment du dernier aimant détecté

SoftwareSerial myMP3(BROCHE RX, BROCHE TX);//create a myMP3 object

static int8 t Send_buf[6] = {0} ;
/************Command byte**************************/
/*basic commands*/

#define CMD_PLAY 0X01

#define CMD_PAUSE 0X02

#define CMD_NEXT SONG 0X03

#define CMD_PREV_SONG 0X04

#define CMD VOLUME UP 0X05

#define CMD_VOLUME DOWN 0X06

#define CMD_FORWARD OXOA // >>

#define CMD REWIND 0OXOB // <<

#define CMD STOP OXOE

#define CMD_STOP_INJECT OXOF//stop interruptting with a song, just stop the interlude

/*5 bytes commands*/

#define CMD_SEL DEV 0X35
#define DEV_TF 0X01

#define CMD_IC_MODE 0X35
#define CMD_SLEEP 0X03
#define CMD WAKE UP 0X02
#define CMD_RESET 0X05

/*6 bytes commands*/

#define CMD_PLAY W_INDEX 0X41
#define CMD_PLAY FILE NAME 0X42
#define CMD_INJECT W _INDEX 0X43

/*Special commands*/
#define CMD SET VOLUME 0X31
#define CMD_PLAY W VOL 0X31

#define CMD_SET_PLAY_MODE 0X33
#define ALL_CYCLE 0X00
#define SINGLE_CYCLE 0x01

#define CMD_PLAY_ COMBINE 0X45//can play combination up to 15 songs
void sendCommand(int8 t command, intl6_t dat);
void setup() {
pinMode (BROCHE_HALL, INPUT);
if (DEBUG) {
Serial.begin(9600);
while (!Serial) ; // wait for Arduino Serial Monitor
}
Serial.println("hello");

myMP3.begin(9600);

delay(500) ; // Attendre l'initialisation compléte de la puce
sendCommand (CMD_SEL_DEV, DEV_TF); // Sélectionner la carte microSD
delay(200); //wait for 200ms
}
void loop() {
boolean START = false; // Va t'il falloir déclencher la lecture du son 7
aimant_etat_precedent = aimant_etat; // Mémoire de 1'état précédent
/*

int ttt = analogRead(BROCHE HALL);
Serial.println(ttt);
delay(50);

*/

// Détecte t'on quelque chose ?

1f (analogRead(BROCHE HALL) = 500) { // aimant détecté
last_aimant = millis();

if (DEBUG) Serial.println("aimant détecté!");

aimant_etat = true;

else {

//if (DEBUG) Serial.println(analogRead(BROCHE HALL));

aimant_etat = false;

//delay(100);

}

-

// Selon 1'état actuel et 1'état précédent de l'aimant on ajoute un au compteur

if (aimant_etat && 'aimant_etat precedent && (millis() - last_aimant < 3000)) {
aimant_compteur ++;
if (DEBUG) Serial.println("passage d'aimant détecté!");
if (DEBUG) Serial.println(aimant_compteur)

}

http://lesporteslogiques.net/wiki/

// Si c'est trop long entre 2 passages, on remet le compteur a zéro
if ((millis() - last_aimant) > 3000) aimant_compteur = 0;
// A t'on atteint le nombre de passage pour déclencher le son ?

if (aimant_compteur >= aimant_declenche) {

START = true;
aimant_compteur = 0;
}
if (START) {
playWithVolume (0X1E01) ; // play the first song with volume 30(0x1E)
delay(147308); // Oh! Ca, c'est tricher, correspond a la durée du son...

}
}

void setVolume(int8 t vol)

{
mp3_5bytes (CMD_SET VOLUME, vol);

void playWithVolume(intl6_t dat)

mp3_6bytes (CMD_PLAY W _VOL, dat);
}

/*cycle play with an index*/
void cyclePlay(intl6_t index)
{
mp3_6bytes (CMD_SET_PLAY_MODE, index);
}

void setCyleMode(int8 t AllSingle)
{
mp3_5bytes (CMD_SET_PLAY_MODE, AllSingle);

}

void playCombine(int8 t song[][2], int8 t number)
{
if (number > 15) return; //number of songs combined can not be more than 15
uint8_t nbytes;//the number of bytes of the command with starting byte and ending byte
nbytes = 2 * number + 4;
int8_t Send_buf[nbytes];
Send_buf[0] = 0x7e; //starting byte
Send_buf[1] = nbytes - 2; //the number of bytes of the command without starting byte and ending byte
Send_buf[2] = CMD_PLAY_COMBINE;
for (uint8 t 1 = 0; 1 < number; i++) //
{
Send_buf(i * 2 + 3] = song[i][0];
Send buf(i * 2 + 4] = song[i][1];

1
5

Send_buf[nbytes - 1] = Oxef;
sendBytes (nbytes) ;

void sendCommand(int8 t command, intl6 t dat = 0)

delay(20);
if ((command == CMD_PLAY_W_VOL) || (command == CMD_SET_ PLAY MODE) || (command == CMD_PLAY_ COMBINE)
return;
else if (command < 0x10)
{
mp3Basic(command) ;
}
else if (command < 0x40)
{
mp3_5bytes(command, dat);
}

else if (command < 0x50)

mp3_6bytes(command, dat);
}

else return;

}
void mp3Basic(int8 t command)
{
Send_buf[0] = Ox7e; //starting byte
Send_buf[1] = 0x02; //the number of bytes of the command without starting byte and ending byte
Send_buf[2] = command;
Send_buf[3] = oxef; //
sendBytes(4);

1
I

void mp3_5bytes(int8 t command, uint8 t dat)
{
Send_buf[0] = Ox7e; //starting byte
Send_buf[1] = 0x03; //the number of bytes of the command without starting byte and ending byte
Send_buf[2] = command;
Send_buf[3] = dat; //

http://lesporteslogiques.net/wiki/

Send_buf[4 oxef; //
sendBytes (5

void mp3_6bytes(int8 t command, intl6 t dat

Send_buf[0 Ox7e; //starting byte

Send_buf[1 0x04; //the number of bytes of the command without starting byte and ending byte
Send_buf|[2 command

Send_buf(3 int8 t)(dat 8);//datah

Send_buf[4 int8 t)(dat); //datal

Send_buf[5 Oxef; //

sendBytes (6
void sendBytes(uint8 t nbytes
uint8 t i = 0; i < nbytes; i //

myMP3.write(Send_buf[i

Article extrait de : http://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://lesporteslogiques.net/wiki/openatelier/projet/sonorisation_hache_lande?rev=1583341319
Article mis a jour: 2020/03/04 18:01

http://lesporteslogiques.net/wiki/

4/4

http://lesporteslogiques.net/wiki/
http://lesporteslogiques.net/wiki/openatelier/projet/sonorisation_hache_lande?rev=1583341319

	Sonorisation d'un hache lande
	Module de lecture MP3 Open-smart serial mp3 player A
	Code final

