WIKI Les Portes Logiques
Adresse de I'article : http://lesporteslogiques.net/wiki/openatelier/projet/sonorisation_hache_lande?rev=1583341581
Article mis a jour le : 2020/03/04 18:06 / Imprimé le 2026/02/07 02:12

arduino, audio, lecteur-son, em

Sonorisation d'un hache lande

/"\ en cours de rédaction 3 mars 2020

Ce projet a été utilisé dans I'exposition «Landes» a I'écomusée des Monts d'Arrée en 2018. La roue du hache lande est
utilisée pour lancer la lecture d'une bande sonore : un chant du travail aux champs. Pour cela, un disque en carton avec des
aimants intégrés est placé autour de I'axe du hache lande. En tournant la roue d'un demi tour, les aimants passent devant
un capteur a effet Hall, quand plusieurs aimants sont détectés, la lecture démarre.

Pour ce projet, nous avons essayé plusieurs modules capables de lire des fichiers sons sur carte micro SD. Plusieurs choses
les différencient : sortie amplifiée ou pas, circuit intégré de décodage, colt, bibliotheque associée. Notre choix s'est porté
sur le module open-smart serial mp3 player A. La communicaton avec arduino se fait par un port série logiciel, de simples
commandes sont envoyées sans utiliser de bibliothéque

Module de lecture MP3 Open-smart serial mp3 player A

LPEN-SMART
3L gopdt

LS
\,g_-s.\\ L

doc : open-smart serial MP3 player A manual v1.1 (pdf)

Difficile de dire quel puce est utilisée sur ce circuit, les inscriptions ont été effacée, il s'agit peut-étre d'une YX6100-16S ou
YX6200-16S de Flyron Technology, ou d'une WT2003-16S de Shenzen Waytronic Electronics, ou d'un JQ8400TF ! En tout cas,
le déclenchement de la lecture se fait en envoyant un message correctement formaté par le port série d'arduino vers le
module mp3. Le manuel donne le détail des différents modes de commande possible et des messages que I'on peut
envoyer.

Dans notre cas, il y a un seul son a lire quand les conditions sont remplies, cad. qu'un demi tour de la roue a été détecté. La
lecture se lance uniquement si elle n'est pas déja lancée, pour cela on bloque I'arduino en utilisant la fonction delay()
ajustée a la durée du son a lire.

Code final

Pas de schéma pour ce circuit... Les connexions se font de cette maniere :

e broche 8 de l'arduino reliée a la broche TX du module
e broche 9 de I'arduino reliée a la broche RX du module
e broche A6 de I'arduino reliée a la sortie du capteur a effet Hall 49E

La sortie jack stereo du module est reliée a une enceinte amplifiée.

circuit_expo_landes_hache_lande_opensmart.ino (cliquer pour afficher le code)

circuit_expo_landes_hache_lande_opensmart.ino

/* Sonorisation du hache lande
* Quimper, 22 avril 2018, pierre <at> lesporteslogiques.net
*

* carte arduino nano robotdyn.com / arduino 1.8.2 @ zibu, debian 7

http://lesporteslogiques.net/wiki/ 1/4


http://lesporteslogiques.net/wiki/tag/arduino?do=showtag&tag=arduino
http://lesporteslogiques.net/wiki/tag/audio?do=showtag&tag=audio
http://lesporteslogiques.net/wiki/tag/lecteur-son?do=showtag&tag=lecteur-son
http://lesporteslogiques.net/wiki/tag/em?do=showtag&tag=em
http://www.ecomusee-monts-arree.fr/
http://lesporteslogiques.net/wiki/_media/openatelier/projet/sonorisation_hache_lande/open-smart_serial_mp3_player_a.jpg
http://emoc.org/materiel/__MODULES/mp3_module_open-smart_serial_mp3_player_A/Serial%20MP3%20Player%20A%20v1.1%20Manual.pdf
http://www.flyrontech.com/eproducts/?id=63
http://www.flyrontech.com/eproducts/?id=63
https://cdn.sparkfun.com/assets/7/c/0/c/6/WT2003S-16S_Chip_V1.03.pdf
http://lesporteslogiques.net/wiki/_export/code/openatelier/projet/sonorisation_hache_lande?codeblock=0
http://lesporteslogiques.net/wiki/openatelier/projet/sonorisation_hache_lande?rev=1583341581

* le circuit utilise un capteur a effet Hall 49E (sortie analogique)
* et un lecteur de MP3 série open smart "Serial MP3 Player A"

*/

boolean

DEBUG = true; // afficher les messages de débugage sur le port série hardware

#include <SoftwareSerial.h>

const byte BROCHE RX = 8;

const byte BROCHE TX =9;

const byte BROCHE_HALL = A6;

byte aimant_compteur = 0; // conserve le nombre d'aimants détectés pour mesurer la rotation
byte aimant_declenche = 4; // Combien d'aimants pour déclencher la lecture ?

boolean aimant_etat; // état actuel de 1'aimant

boolean aimant_etat precedent; // état précédent de 1'aimant

long last_aimant =0; // Conserve le moment du dernier aimant détecté

SoftwareSerial myMP3(BROCHE_RX, BROCHE_TX);//create a myMP3 object

static int8 t Send_buf[6] = {0} ;

JFFFRRRIIAAA K Command - by teHHHFA ARk kKA A A K Kok /

/*basic
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

commands*/

CMD_PLAY 0Xx01
CMD_PAUSE 0X02
CMD_NEXT SONG 0X63

CMD PREV SONG 0X04
CMD_VOLUME_UP 0X05
CMD_VOLUME_DOWN 0X06
CMD_FORWARD 0OXOA // >>
CMD_REWIND 0X0B // <<
CMD STOP OXOE
CMD_STOP_INJECT OXOF//stop interruptting with a song, just stop the interlude

/*5 bytes commands*/

#define
#define
#define
#define
#define
#define

CMD SEL DEV 0X35
DEV_TF 0X01

CMD_IC MODE 0X35
CMD SLEEP  0X03
CMD_WAKE UP 0X02
CMD RESET  0X05

/*6 bytes commands*/

#define
#define
#define

CMD _PLAY W _INDEX  0X41
CMD _PLAY FILE NAME 0X42
CMD_INJECT W INDEX 0X43

/*Special commands*/

#define
#define

#define
#define
#define

#define

CMD_SET VOLUME 6X31
CMD _PLAY W VOL 0X31

CMD SET PLAY MODE X33
ALL CYCLE 0X00
SINGLE CYCLE 0X01

CMD_PLAY_COMBINE 0X45//can play combination up to 15 songs

void sendCommand(int8 t command, intl6 t dat );

void setup() {
pinMode (BROCHE_HALL, INPUT);

if (DEBUG) {
Serial.begin(9600);

while (!Serial) ; // wait for Arduino Serial Monitor
}
Serial.println("hello");
myMP3.begin(9600) ;
delay(500); // Attendre l'initialisation compléte de la puce
sendCommand (CMD_SEL_DEV, DEV_TF); // Sélectionner la carte microSD
delay(200); //wait for 200ms

}
void loop() {
boolean START = false; // Va t'il falloir déclencher la lecture du son ?

aimant_etat_precedent = aimant_etat; // Mémoire de 1'état précédent

/*

int ttt = analogRead(BROCHE HALL);
Serial.println(ttt);
delay(50);

*/

// Détecte t'on quelque chose ?

if (analogRead(BROCHE_HALL) = 500) { // aimant détecté

last_aimant

millis();

if (DEBUG) Serial.println("aimant détecté!");
aimant_etat = true;
} else {

http://lesporteslogiques.net/wiki/



//if (DEBUG) Serial.println(analogRead(BROCHE HALL));
aimant_etat = false;
//delay(100);

}

// Selon 1'état actuel et 1'état précédent de l'aimant on ajoute un au compteur

if (aimant_etat && 'aimant_etat_precedent && (millis() - last_aimant < 3000)) {
aimant_compteur ++;
if (DEBUG) Serial.println("passage d'aimant détecté!");
if (DEBUG) Serial.println(aimant_compteur)

}

// Si c'est trop long entre 2 passages, on remet le compteur a zéro
if ((millis() - last_aimant) > 3000) aimant_compteur = 0;
// A t'on atteint le nombre de passage pour déclencher le son ?

if (aimant_compteur >= aimant_declenche) {
START = true;
aimant_compteur = 0;

}

if (START) {
playWithVolume (0X1E01) ; // play the first song with volume 30(0xI1E)
delay(147308); // Oh! Ca, c'est tricher, correspond a la durée du son...
}

1
I

void setVolume(int8 t vol)

{
mp3_5bytes (CMD_SET_VOLUME, vol);

1
I

void playWithVolume(intl6 t dat)
{

mp3_6bytes (CMD_PLAY W VOL, dat);
}

/*cycle play with an index*/
void cyclePlay(intl6 t index)

mp3_6bytes (CMD_SET PLAY_MODE, index);

}
void setCyleMode(int8 t AllSingle)
{
mp3_5bytes(CMD SET PLAY MODE, AllSingle);
}

void playCombine(int8 t song[][2], int8 t number)
{
if (number > 15) return; //number of songs combined can not be more than 15
uint8_t nbytes;//the number of bytes of the command with starting byte and ending byte
nbytes = 2 * number + 4;
int8 t Send buf[nbytes];
Send_buf[0] = Ox7e; //starting byte
Send_buf[1] = nbytes - 2; //the number of bytes of the command without starting byte and ending byte
Send_buf[2] = CMD_PLAY_COMBINE;
for (uint8 t i = 0; i < number; i++) //

Send_buf[i * 2 + 3] = song[i][0];
Send buf[i * 2 + 4] = song[il[1]
}
Send_buf[nbytes - 1] = Oxef;
sendBytes (nbytes) ;

-

void sendCommand(int8 t command, intl6 t dat = 0)

{

delay(20);

if ((command == CMD_PLAY_W _VOL) || (command == CMD_SET PLAY MODE) || (command == CMD_PLAY_ COMBINE)
return;

else if (command < 0x10)

{
mp3Basic(command) ;

}

else if (command < 0x40)

{
mp3_5bytes(command, dat);

}

else if (command < 0x50)

{

mp3_6bytes(command, dat);

}

else return;

}

void mp3Basic(int8 t command)

http://lesporteslogiques.net/wiki/



Send_buf [0 0x7e; //starting byte

Send_buf|1 0x02; //the number of bytes of the command without starting byte and ending byte
Send_buf|[2 command

Send_buf[3 Oxef; //

sendBytes (4

void mp3_5bytes(int8 t command, uint8 t dat

Send_buf [0 0x7e; //starting byte

Send_buf[1 0x03; //the number of bytes of the command without starting byte and ending byte
Send_buf|[2 command

Send_buf[3 dat; //

Send_buf[4 oxef; //

sendBytes (5

void mp3_6bytes(int8 t command, intl6 t dat

Send_buf [0 0x7e; //starting byte

Send buf[1 0x04; //the number of bytes of the command without starting byte and ending byte
Send_buf|[2 command

Send_buf[3 int8 t)(dat 8);//datah

Send_buf[4 int8_t)(dat); //datal

Send_buf[5 oxef; //

sendBytes (6
void sendBytes(uint8 t nbytes
uint8 t i = 0; i < nbytes; i //

myMP3.write(Send_buf[i

Ressources

Article extrait de : http://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://lesporteslogiques.net/wiki/openatelier/projet/sonorisation_hache_lande?rev=1583341581
Article mis a jour: 2020/03/04 18:06

http://lesporteslogiques.net/wiki/


http://lesporteslogiques.net/wiki/
http://lesporteslogiques.net/wiki/openatelier/projet/sonorisation_hache_lande?rev=1583341581

	Sonorisation d'un hache lande
	Module de lecture MP3 Open-smart serial mp3 player A
	Code final
	Ressources


