WIKI Les Portes Logiques
Adresse de I'article : http://lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper
Article mis a jour le : 2025/11/11 16:31 / Imprimé le 2026/01/11 21:29

mesh 2 svg 2 paper

Meshlab : https://www.meshlab.net/ Rien tiré de meshlab pour transformer un mesh (stl, obj) en svg

Premier essai concluant avec https://www.svgai.org/convert/stl-to-svg, le fichier s'ouvre bien avec inkscape, I'épaisseur des
traits est bien trop élevée mais ca s'arrange facilement. Aucune face n'est cachée

Conseil de Laurent : utiliser «In» de Michael Fogleman : https://github.com/fogleman/In C'est programmé en Go,
jamais utilisé

Pour la suite j'utilise 'objet teapot.obj extrait du newell_teaset.zip

Conversion de formats 3D en ligne de commande

Avec OpenCTM (https://sourceforge.net/projects/openctm/)

sudo apt install openctm-tools
Ensuite on peut utiliser ctmconv qui permet de convertir les formats suivants :

OpenCTM (.ctm),

Stanford triangle format (.ply),
Stereolitography (.stl),

3D Studio (.3ds),

COLLADA 1.4/1.5 (.dae),
Wavefront geometry file (.obj),
LightWave object (.lwo),
Geomview object file format (.off),
VRML 2.0 - export only (.wrl).

Exemple :

ctmconv parasect.obj parasect.stl

Infos sur un objet 3D en ligne de commande
Nombre de points, de faces, etc.

Avec assimp-utils

sudo apt install assimp-utils
assimp info teapot.obj

Assimp pour Open Asset Import Library

e https://github.com/assimp/assimp
e https://the-asset-importer-lib-documentation.readthedocs.io/en/latest/

http://lesporteslogiques.net/wiki/ 1/8

https://www.meshlab.net/
https://www.svgai.org/convert/stl-to-svg
https://github.com/fogleman/ln
https://www.cs.utah.edu/~natevm/newell_teaset/newell_teaset.zip
http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/teapot.obj.png
https://sourceforge.net/projects/openctm/
https://github.com/assimp/assimp
https://the-asset-importer-lib-documentation.readthedocs.io/en/latest/
http://lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper

Affichage d'objets STL

Avec GMSH : https://gmsh.info/ qui est aussi capable d'une multitude d'autres choses (en GUI ou CLI)

Flo_Toss_indow b
r

Installation de Go

Rkl kolotololotololotoolotof koo olor ok # installation du langage Go sur Debian 12 @ tenko
sudo apt update

sudo apt install golang

go version # go version gol.19.8 linux/amd64

go env GOPATH # ok : /home/emoc/go

Helloworld en Go

Créer un fichier vide helloworld.go
nano helloworld.go

Le fichier helloworld.go contient

main
[s—_

func main() {
fmt.Println("HelloWorld, Golang!")
}

Puis
go run hello.go
Comment compiler ce programme pour qu'il puisse étre utilisé comme une commande ?

Il faut le transformer en module

go mod init example/helloworld # donner un nom et chemin au module
go mod tidy # récupérer les dépendances
go build -o helloworld # créer le binaire «helloworld»

mv ./helloworld ../bin/helloworld

Maintenant on peut déclencher la commande avec

~/go/bin/helloworld

Utilisation de Simplify

Simplify est un logiciel en ligne de commande de Michael Fogleman qui permet de réduire le nombre de faces d'un objet 3D
au format .STL. Simplify est programmé en Go

https://github.com/fogleman/simplify

installer Go (voir ci-dessus)

mkdir ~/go/bin

go install github.com/fogleman/simplify/cmd/simplify@latest

réduction a 10% des faces de 1'objet (652 faces -> 64 faces)
~/go/bin/simplify -f 0.1 parasect.stl parasect-0.1.stl

Comparaison (objet original : parasect)

http://lesporteslogiques.net/wiki/ 2/8

https://gmsh.info/
http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/gmsh.png
https://github.com/fogleman/simplify
https://models.spriters-resource.com/nintendo_64/pokemonstadium2/asset/287712/

Utilisation de In

Pour transformer un objet 3D au format .OBJ en fichier .SVG

git clone https://github.com/fogleman/ln.git
cd 1n

go mod init ln/ln
go mod tidy

placer le fichier teapot.obj dans le dossier et créer le fichier teapot.go :
main
"github.com/fogleman/ln/1n"

func main() {
scene := ln.Scene{}
mesh, err := ln.LoadOBJ("teapot.obj")
err !'= nil {
panic(err)
}
mesh.UnitCube()
scene.Add(1n.NewTransformedShape (mesh, ln.Rotate(ln.Vector{0, 1, 0}, 0.5)))
// scene.Add(mesh)
eye := ln.Vector{-0.5, 0.5, 2}
center := 1n.Vector{}
up := ln.Vector{0, 1, 0}
width := 1024.0
height := 1024.0
paths := scene.Render(eye, center, up, width, height, 35, 0.1, 100, 0.01)
paths.WriteToPNG("teapot.png", width, height)
paths.WriteToSVG("teapot.svg", width, height)

Puis
go run teapot.go

Ca marche! Le fichier svg est créé, en fonction du point de vue défini dans le script go, les faces qui doivent I'étre sont
cachées.

Transformer en exécutable.

La commande est lancée depuis le répertoire courant dans lequel se trouve le fichier teapot.obj, les fichiers résultants
(teapot.png et teapot.svg) sont créés dans le répertoire courant.

go build -o teapot # construire le binaire

mv teapot ../bin/teapot # déplacer dans le dossier ~/go/bin
~/go/bin/teapot # lancer la commande depuis le répertoire courant
On obtient

s 00 aroo

R

TR
R
8

R

—
K

R

o)

kv ase xs08 0%6

Extrait du fichier svg

<svg width="1024.000000" height="1024.000000" version="1.1" baseProfile="full" xmlns="http://www.w3.0rg/2000/svg">
<g transform="translate(0,1024.000000) scale(l,-1)">

<polyline stroke="black" fill="none" points="628.113702,626.372774 630.057369,626.470582" />

<polyline stroke="black" fill="none" points="630.057369,626.470582 612.007059,629.402582" />

http://lesporteslogiques.net/wiki/

http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/parasect_comparaison_reduction_de_faces.png
http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/teapot_dans_inkscape.png

<polyline stroke="black" fill="none"
<polyline stroke="black" fill="none"
<polyline stroke="black" fill="none"
<polyline stroke="black" fill="none"
<polyline stroke="black" fill="none"
<polyline stroke="black" fill="none"

. etc.

points="646.
points="645.
points="639.
points="645.
points="646.
points="659.

867425,619.
594080,623.
714178,622.
594080,623.
867425,619.
738739,615.

146177
083557
890858
083557
146177
250381

En manipulant, on dirait bien que les tracés sont doublés

obj2svg

645.
641.
645.
630.
659.
658.

594080,623.083557"
262088,622.941587"
594080,623.083557"
057369,626.470582"
738739,615.250381"
331336,619.276179"

/>
/>
/>
/>
/>
/>

Je cherche a créer une commande qui soit accessible de n'importe ou qui permette de transformer un objet 3D au format
.OBJ en image png et fichier SVG du maillage

Créer le dossier et le fichier

mkdir test obj2svg
cd test obj2svg
touch obj2svg.go # puis l'éditer

obj2svg.go (cliquer pour afficher le code)

obj2svg.go

<code go>
main

(
“fmt"
"flag"

"github.com/fogleman/ln/1n"

)

func main() {

// Parsing des arguments

flag.Parse()
args := flag.Args()
len(args) !'= 1 {

fmt.Println("Usage: obj2svg input.obj -> créera 2 fichiers input.obj.png et input.obj.svg")

}

pngfilename
svgfilename

args[0] + ".png"
args[0] + ".svg"

fmt.Printf("pngfilename %s\n", pngfilename)
fmt.Printf("svgfilename %s\n", svgfilename)

scene := ln.Scene{}

fmt.Printf("Loading %s\n", args[0])
mesh, err := ln.LoadOBJ(args[0])

err !'= nil {

panic(err)
}
mesh.UnitCube()

scene.Add(ln.NewTransformedShape (mesh, ln.Rotate(ln.Vector{0, 1, 0}, 0.5)))

// scene.Add(mesh)

eye := ln.Vector{-0.5, 0.5, 2}

center := ln.Vector{}

up := ln.Vector{0, 1, 0}

width := 1024.0
height := 1024.0

paths := scene.Render(eye, center, up, width, height, 35, 0.1, 100, 0.01)
paths.WriteToPNG(pngfilename, width, height)
paths.WriteToSVG(svgfilename, width, height)

Puis

go
go
go
go
mv

mod init example/obj2svg
mod tidy

run obj2svg.go teapot.obj
build -o obj2svg

obj2svg ../bin/obj2svg

initialiser le module

charger les dépendances

ok, tout fonctionne
construire 1'exécutable
le placer dans le bon dossier
Maintenant on peut exécuter la commande suivante dans n'importe quel dossier
~/go/bin/obj2svg teapot.obj

http://lesporteslogiques.net/wiki/

4/8

http://lesporteslogiques.net/wiki/_export/code/recherche/residence_polygones/mesh2svg2paper?codeblock=3

TODO : permettre la rotation de la vue

rendu wireframe avec blender CLI + gif

Script python blender a utiliser en ligne de commande avec

blender --background --python blender teapot wireframe views.py
blender_teapot_wireframe_views.py (cliquer pour afficher le code)

blender_teapot_wireframe_views.py

Blender 3.4.1
Debian 12 @ tenko
20251109, résidence polygones @ Fablab des portes logiques

bpy

math
B oo
Rendu wireframe "propre" 600x600
3

Supprimer tous les objets existants
bpy.ops.wm.read factory settings(use_ empty=True

Importer le STL
bpy.ops.import mesh.stl(filepath="teapot.stl"
obj bpy.context.selected objects|[0

Supprimer tous les matériaux existants
obj.data.materials.clear

Ajouter un modifier wireframe
mod obj.modifiers.new(name="WireframeMod", type-='WIREFRAME'
mod . thickness 0.02 # épaisseur des lignes

Créer un matériau noir shadeless pour le wireframe
mat = bpy.data.materials.new(name="WireMat"
mat.diffuse color 0, 0, 0, 1

mat.use _nodes = True

bsdf = mat.node tree.nodes.get("Principled BSDF"
bsdf.inputs|'Base Color'].default value 0,0, 0,1
bsdf.inputs|'Specular'].default_value 0
bsdf.inputs|'Roughness'].default value 1
obj.data.materials.append(mat

Ajouter une caméra

cam_data bpy.data.cameras.new(name="Camera"
cam_object bpy.data.objects.new("Camera", cam_data
bpy.context.collection.objects.link(cam object
bpy.context.scene.camera = cam object

Paramétres de rendu

scene = bpy.context.scene
scene.render.image_settings.file format 'PNG'
scene.render.resolution x = 600
scene.render.resolution y = 600

scene.render.film transparent = False # fond blanc
scene.render.film transparent glass = False

Désactiver l’anti-aliasing

scene.render.use antialiasing = False

scene.render.engine 'BLENDER _EEVEE' # moteur Eevee plus simple
Eevee anti-aliasing quasi désactivé

http://lesporteslogiques.net/wiki/

http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/teapot_wire.gif
http://lesporteslogiques.net/wiki/_export/code/recherche/residence_polygones/mesh2svg2paper?codeblock=4

scene.eevee.taa render_samples 1

Récupérer la scene
scene bpy.context.scene

Créer un monde si nécessaire

if scene.world is None:
world = bpy.data.worlds.new("World"
scene.world = world

Couleur de fond blanc

scene.world.use_nodes = True

bg = scene.world.node tree.nodes['Background’
bg.inputs|['Color'].default value 1, 1, 1, 1) # blanc

Centrer la caméra autour de l'objet
center = obj.location

Parametres rotation

n_views = 30

radius 10 # distance caméra
elevation 5

for i in range(n_views):
angle = 2 * math.pi * i / n_views
cam_object.location.x = center.x + radius * math.cos(angle
cam_object.location.y = center.y + radius * math.sin(angle
cam_object.location.z = center.z + elevation

Orienter la caméra vers le centre

direction = center - cam_object.location
rot_quat = direction.to_track quat('-Z', 'Y'
cam_object.rotation euler rot_quat.to euler

Nom du fichier
scene.render.filepath = f"teapot wire {i:02d}.png"

Rendu
bpy.ops.render.render(write_still=True

Ensuite on peut assembler les images avec

convert teapot _wire *.png -threshold 50% -colors 2 -resize 600x600 teapot wire.gif

Version alternative qui affiche également les faces (et masque les faces cachées)

blender --background --python blender teapot_facewire.py # calculer les rendus d'image
convert teapot_facewire *.png -threshold 50% -colors 2 -resize 300x300 teapot_ facewire.gif # préparer l'animation

blender_teapot_facewire.py (cliquer pour afficher le code)

blender_teapot_facewire.py
Blender 3.4.1
Debian 12 @ tenko
20251109, résidence polygones @ Fablab des portes logiques

En ligne 65 on peut choisir : fond transparent ou fond monochrome (changement de couleur en ligne 77)

import bpy
import math

Configuration de la scene

http://lesporteslogiques.net/wiki/

6/8

http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/teapot_facewire.gif
http://lesporteslogiques.net/wiki/_export/code/recherche/residence_polygones/mesh2svg2paper?codeblock=5

Supprimer tous les objets existants
bpy.ops.wm.read factory settings(use empty=True)

Importer le STL
bpy.ops.import_mesh.stl(filepath="teapot.stl")
obj = bpy.context.selected objects[0]

Supprimer tous les matériaux existants
obj.data.materials.clear()

mat = bpy.data.materials.new("FaceWhite")

mat.use_nodes = True

bsdf = mat.node tree.nodes|["Principled BSDF"]

bsdf.inputs|'Base Color'].default value = (1, 1, 1, 1) # blanc
bsdf.inputs|['Specular'].default _value = 0
obj.data.materials.append(mat)

Ajouter un modifier wireframe

mod = obj.modifiers.new(name="WireframeMod", type='WIREFRAME')
mod.thickness = 0.02

mod.use_replace = False # conserve faces originales

Création d’un second matériau pour le wireframe
wire_mat = bpy.data.materials.new("WireBlack")
wire _mat.use nodes = True

nodes = wire mat.node tree.nodes

bsdf_wire = nodes.get("Principled BSDF")
bsdf_wire.inputs['Base Color'].default value =
bsdf_wire.inputs['Specular'].default_value = 0
obj.data.materials.append(wire _mat)

(6, 0, @, 1) # noir

Associer le modifier wireframe au matériau noir
mod.material offset = 1 # utilise le second matériau

cam_data = bpy.data.cameras.new(name="Camera")
cam_object = bpy.data.objects.new("Camera", cam_data)
bpy.context.collection.objects.link(cam_object)
bpy.context.scene.camera = cam_object

Paramétres de rendu

scene = bpy.context.scene

scene.render.image_settings.file format = 'PNG'

scene.render.resolution_x = 600

scene.render.resolution_y = 6600

scene.render.film transparent = True # False : fond blanc, True : fond transparent
scene.render.engine = 'BLENDER EEVEE'

scene.eevee.taa render_samples = 1 # anti-aliasing minimal

Fond blanc
if scene.world is None:
world = bpy.data.worlds.new("World")
scene.world = world
scene.world.use nodes = True
bg = scene.world.node tree.nodes|'Background']
bg.inputs|['Color'].default value = (1, 1, 1, 1) # blanc

center = obj.location
n_views = 30

radius = 10

elevation = 5

for i in range(n_views):
angle = 2 * math.pi *
cam_object.location.x
cam_object.location.y
cam_object.location.z

i/ n_views

= center.x + radius * math.cos(angle)
center.y + radius * math.sin(angle)
center.z + elevation

Orienter la caméra vers le centre de l'objet
direction = center - cam_object.location
rot_quat = direction.to track quat('-Z', 'Y')
cam_object.rotation euler = rot _quat.to euler()

Nom du fichier
scene.render.filepath = f"teapot facewire {i:02d}.png"

Rendu

http://lesporteslogiques.net/wiki/

bpy.ops.render.render(write still=True

Blender Export Paper Model

Un add-on pour Blender permet de «déplier» un objet 3D : Export Paper Model

Utiliser vpype

Sur Linux Debian 12, en suivant les indications de https://vpype.readthedocs.io/en/latest/install.hntml#linux

sudo apt-get install pipx

pipx ensurepath

pipx install "vpype[all]"

vpype --version # vpype 1.15.0

vpype random show # 000000000000000000h !

J'ajoute deduplicate, plugin vpype pour enlever les lignes en doublon dans un fichier svg
https://github.com/LoicGoulefert/deduplicate

pipx inject vpype deduplicate
vpype --help # pour confirmer que l'installation s'est bien passée : deduplicate apparait dans la partie Plugins

Ainsi que occult, plugin vpype pour masquer les faces cachées d'un fichier svg https://github.com/LoicGoulefert/occult

pipx inject vpype vpype-occult
vpype --help # pour confirmer que l'installation s'est bien passée : occult apparait dans la partie Plugins

Exemple d'utilisation

~/go/bin/simplify -f 0.5 teapot.stl teapot-0.5.stl # simplification de 1'objet 3D
ctmconv teapot-0.5.stl teapot-0.5.0bj # conversion au format OBJ
~/go/bin/obj2svg teapot-0.5.0bj # création de 2 fichiers PNG et SVG

vpype read teapot-0.5.0bj.svg deduplicate write teapot-0.5.0bj dedup.svg # déduplication des arétes en double dans le fichier SVG

Autres trucs intéressants a essayer

removeduplicatelines : une extension inkscape qui enléve les segments dupliqués :
https://cutlings.datafil.no/inkscape-extension-removeduplicatelines/

vpype «vpype is an extensible CLI pipeline utility which aims to be the Swiss Army knife for creating, modifying and/or
optimizing plotter-ready vector graphics» https://vpype.readthedocs.io/en/latest/install.html#linux

Article extrait de : http://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper
Article mis a jour: 2025/11/11 16:31

http://lesporteslogiques.net/wiki/

8/8

http://lesporteslogiques.net/wiki/recherche/residence_polygones/blender_export_paper_model
https://vpype.readthedocs.io/en/latest/install.html#linux
https://github.com/LoicGoulefert/deduplicate
https://github.com/LoicGoulefert/occult
https://cutlings.datafil.no/inkscape-extension-removeduplicatelines/
https://vpype.readthedocs.io/en/latest/install.html#linux
http://lesporteslogiques.net/wiki/
http://lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper

	mesh 2 svg 2 paper
	Conversion de formats 3D en ligne de commande
	Infos sur un objet 3D en ligne de commande
	Affichage d'objets STL
	Installation de Go
	Helloworld en Go

	Utilisation de Simplify
	Utilisation de ln
	obj2svg
	rendu wireframe avec blender CLI + gif
	Blender Export Paper Model
	Utiliser vpype
	Autres trucs intéressants à essayer

