
WIKI Les Portes Logiques
Adresse de l'article : http://lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper?rev=1762704069
Article mis à jour le : 2025/11/09 17:01 / Imprimé le 2026/01/12 03:00

http://lesporteslogiques.net/wiki/ 1 / 5

mesh 2 svg 2 paper
Meshlab : https://www.meshlab.net/ Rien tiré de meshlab pour transformer un mesh (stl, obj) en svg

Premier essai concluant avec https://www.svgai.org/convert/stl-to-svg, le fichier s'ouvre bien avec inkscape, l'épaisseur des
traits est bien trop élevée mais ça s'arrange facilement. Aucune face n'est cachée

Conseil de Laurent : utiliser «ln» de Michael Fogleman : https://github.com/fogleman/ln C'est programmé en Go,
jamais utilisé

Pour la suite j'utilise l'objet teapot.obj extrait du newell_teaset.zip

Conversion de formats 3D en ligne de commande
Avec OpenCTM (https://sourceforge.net/projects/openctm/)

sudo apt install openctm-tools

Ensuite on peut utiliser ctmconv qui permet de convertir les formats suivants :

OpenCTM (.ctm),
Stanford triangle format (.ply),
Stereolitography (.stl),
3D Studio (.3ds),
COLLADA 1.4/1.5 (.dae),
Wavefront geometry file (.obj),
LightWave object (.lwo),
Geomview object file format (.off),
VRML 2.0 - export only (.wrl).

Affichage d'objets STL
Avec GMSH : https://gmsh.info/ qui est aussi capable d'une multitude d'autres choses (en GUI ou CLI)

https://www.meshlab.net/
https://www.svgai.org/convert/stl-to-svg
https://github.com/fogleman/ln
https://www.cs.utah.edu/~natevm/newell_teaset/newell_teaset.zip
http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/teapot.obj.png
https://sourceforge.net/projects/openctm/
https://gmsh.info/
http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/gmsh.png
http://lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper?rev=1762704069

http://lesporteslogiques.net/wiki/ 2 / 5

Installation de Go
************************************** # installation du langage Go sur Debian 12 @ tenko
sudo apt update
sudo apt install golang
go version # go version go1.19.8 linux/amd64
go env GOPATH # ok : /home/emoc/go

Helloworld en Go

Créer un fichier vide helloworld.go

nano helloworld.go

Le fichier helloworld.go contient

package main

import "fmt"

func main() {
 fmt.Println("HelloWorld, Golang!")
}

Puis

go run hello.go

Comment compiler ce programme pour qu'il puisse être utilisé comme une commande ?

Il faut le transformer en module

go mod init example/helloworld # donner un nom et chemin au module
go mod tidy # récupérer les dépendances
go build -o helloworld # créer le binaire «helloworld»
mv ./helloworld ../bin/helloworld

Maintenant on peut déclencher la commande avec

~/go/bin/helloworld

Utilisation de Simplify
Simplify est un logiciel en ligne de commande de Michael Fogleman qui permet de réduire le nombre de faces d'un objet 3D
au format .STL. Simplify est programmé en Go

https://github.com/fogleman/simplify

installer Go (voir ci-dessus)
mkdir ~/go/bin
go install github.com/fogleman/simplify/cmd/simplify@latest
réduction à 10% des faces de l'objet (652 faces -> 64 faces)
~/go/bin/simplify -f 0.1 parasect.stl parasect-0.1.stl

Comparaison (objet original : parasect)

Utilisation de ln
Pour transformer un objet 3D au format .OBJ en fichier .SVG

git clone https://github.com/fogleman/ln.git
cd ln

https://github.com/fogleman/simplify
https://models.spriters-resource.com/nintendo_64/pokemonstadium2/asset/287712/
http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/parasect_comparaison_reduction_de_faces.png

http://lesporteslogiques.net/wiki/ 3 / 5

go mod init ln/ln
go mod tidy

placer le fichier teapot.obj dans le dossier et créer le fichier teapot.go :

package main

import "github.com/fogleman/ln/ln"

func main() {
 scene := ln.Scene{}
 mesh, err := ln.LoadOBJ("teapot.obj")
 if err != nil {
 panic(err)
 }
 mesh.UnitCube()
 scene.Add(ln.NewTransformedShape(mesh, ln.Rotate(ln.Vector{0, 1, 0}, 0.5)))
 // scene.Add(mesh)
 eye := ln.Vector{-0.5, 0.5, 2}
 center := ln.Vector{}
 up := ln.Vector{0, 1, 0}
 width := 1024.0
 height := 1024.0
 paths := scene.Render(eye, center, up, width, height, 35, 0.1, 100, 0.01)
 paths.WriteToPNG("teapot.png", width, height)
 paths.WriteToSVG("teapot.svg", width, height)
}

Puis

go run teapot.go

Ça marche! Le fichier svg est créé, en fonction du point de vue défini dans le script go, les faces qui doivent l'être sont
cachées.

Transformer en exécutable.

La commande est lancée depuis le répertoire courant dans lequel se trouve le fichier teapot.obj, les fichiers résultants
(teapot.png et teapot.svg) sont créés dans le répertoire courant.

go build -o teapot # construire le binaire
mv teapot ../bin/teapot # déplacer dans le dossier ~/go/bin
~/go/bin/teapot # lancer la commande depuis le répertoire courant

On obtient

Extrait du fichier svg

<svg width="1024.000000" height="1024.000000" version="1.1" baseProfile="full" xmlns="http://www.w3.org/2000/svg">
<g transform="translate(0,1024.000000) scale(1,-1)">
<polyline stroke="black" fill="none" points="628.113702,626.372774 630.057369,626.470582" />
<polyline stroke="black" fill="none" points="630.057369,626.470582 612.007059,629.402582" />
<polyline stroke="black" fill="none" points="646.867425,619.146177 645.594080,623.083557" />
<polyline stroke="black" fill="none" points="645.594080,623.083557 641.262088,622.941587" />
<polyline stroke="black" fill="none" points="639.714178,622.890858 645.594080,623.083557" />
<polyline stroke="black" fill="none" points="645.594080,623.083557 630.057369,626.470582" />
<polyline stroke="black" fill="none" points="646.867425,619.146177 659.738739,615.250381" />
<polyline stroke="black" fill="none" points="659.738739,615.250381 658.331336,619.276179" />
... etc.

En manipulant, on dirait bien que les tracés sont doublés

obj2svg
Je cherche à créer une commande qui soit accessible de n'importe où qui permette de transformer un objet 3D au format
.OBJ en image png et fichier SVG du maillage

http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/teapot_dans_inkscape.png

http://lesporteslogiques.net/wiki/ 4 / 5

Créer le dossier et le fichier

mkdir test_obj2svg
cd test_obj2svg
touch obj2svg.go # puis l'éditer

obj2svg.go (cliquer pour afficher le code)

obj2svg.go

<code go>
package main

import (
 "fmt"
 "flag"

 "github.com/fogleman/ln/ln"
)

func main() {

 // Parsing des arguments

 flag.Parse()
 args := flag.Args()
 if len(args) != 1 {
 fmt.Println("Usage: obj2svg input.obj -> créera 2 fichiers input.obj.png et input.obj.svg")
 return
 }

 pngfilename := args[0] + ".png"
 svgfilename := args[0] + ".svg"

 fmt.Printf("pngfilename %s\n", pngfilename)
 fmt.Printf("svgfilename %s\n", svgfilename)

 scene := ln.Scene{}
 fmt.Printf("Loading %s\n", args[0])
 mesh, err := ln.LoadOBJ(args[0])
 if err != nil {
 panic(err)
 }
 mesh.UnitCube()
 scene.Add(ln.NewTransformedShape(mesh, ln.Rotate(ln.Vector{0, 1, 0}, 0.5)))
 // scene.Add(mesh)
 eye := ln.Vector{-0.5, 0.5, 2}
 center := ln.Vector{}
 up := ln.Vector{0, 1, 0}
 width := 1024.0
 height := 1024.0
 paths := scene.Render(eye, center, up, width, height, 35, 0.1, 100, 0.01)
 paths.WriteToPNG(pngfilename, width, height)
 paths.WriteToSVG(svgfilename, width, height)
}

Puis

go mod init example/obj2svg # initialiser le module
go mod tidy # charger les dépendances
go run obj2svg.go teapot.obj # ok, tout fonctionne
go build -o obj2svg # construire l'exécutable
mv obj2svg ../bin/obj2svg # le placer dans le bon dossier
Maintenant on peut exécuter la commande suivante dans n'importe quel dossier
~/go/bin/obj2svg teapot.obj

TODO : permettre la rotation de la vue

Autres trucs intéressants à essayer
removeduplicatelines : une extension inkscape qui enlève les segments dupliqués :
https://cutlings.datafil.no/inkscape-extension-removeduplicatelines/

deduplicate plugin vpype pour enlever les lignes en doublon dans un fichier svg
https://github.com/LoicGoulefert/deduplicate

occult plugin vpype pour masquer les faces cachées d'un fichier svg https://github.com/LoicGoulefert/occult

vpype «vpype is an extensible CLI pipeline utility which aims to be the Swiss Army knife for creating, modifying and/or

http://lesporteslogiques.net/wiki/_export/code/recherche/residence_polygones/mesh2svg2paper?codeblock=3
https://cutlings.datafil.no/inkscape-extension-removeduplicatelines/
https://github.com/LoicGoulefert/deduplicate
https://github.com/LoicGoulefert/occult

http://lesporteslogiques.net/wiki/ 5 / 5

optimizing plotter-ready vector graphics» https://vpype.readthedocs.io/en/latest/install.html#linux

Article extrait de : http://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse :
http://lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper?rev=1762704069
Article mis à jour: 2025/11/09 17:01

https://vpype.readthedocs.io/en/latest/install.html#linux
http://lesporteslogiques.net/wiki/
http://lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper?rev=1762704069

	mesh 2 svg 2 paper
	Conversion de formats 3D en ligne de commande
	Affichage d'objets STL
	Installation de Go
	Helloworld en Go

	Utilisation de Simplify
	Utilisation de ln
	obj2svg
	Autres trucs intéressants à essayer

