WIKI Les Portes Logiques
Adresse de I'article : http://lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper?rev=1762715596
Article mis a jour le : 2025/11/09 20:13 / Imprimé le 2026/01/12 02:59

mesh 2 svg 2 paper

Meshlab : https://www.meshlab.net/ Rien tiré de meshlab pour transformer un mesh (stl, obj) en svg

Premier essai concluant avec https://www.svgai.org/convert/stl-to-svg, le fichier s'ouvre bien avec inkscape, I'épaisseur des
traits est bien trop élevée mais ca s'arrange facilement. Aucune face n'est cachée

Conseil de Laurent : utiliser «In» de Michael Fogleman : https://github.com/fogleman/In C'est programmé en Go,
jamais utilisé

Pour la suite j'utilise 'objet teapot.obj extrait du newell_teaset.zip

Conversion de formats 3D en ligne de commande

Avec OpenCTM (https://sourceforge.net/projects/openctm/)

sudo apt install openctm-tools
Ensuite on peut utiliser ctmconv qui permet de convertir les formats suivants :

OpenCTM (.ctm),

Stanford triangle format (.ply),
Stereolitography (.stl),

3D Studio (.3ds),

COLLADA 1.4/1.5 (.dae),
Wavefront geometry file (.obj),
LightWave object (.lwo),
Geomview object file format (.off),
VRML 2.0 - export only (.wrl).

Exemple :

ctmconv parasect.obj parasect.stl

Affichage d'objets STL

Avec GMSH : https://gmsh.info/ qui est aussi capable d'une multitude d'autres choses (en GUI ou CLI)

http://lesporteslogiques.net/wiki/ 1/8

https://www.meshlab.net/
https://www.svgai.org/convert/stl-to-svg
https://github.com/fogleman/ln
https://www.cs.utah.edu/~natevm/newell_teaset/newell_teaset.zip
http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/teapot.obj.png
https://sourceforge.net/projects/openctm/
https://gmsh.info/
http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/gmsh.png
http://lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper?rev=1762715596

Installation de Go

* HAFHEAA AR AR AR HAHAA AKX # installation du langage Go sur Debian 12 @ tenko
sudo apt update

sudo apt install golang

go version # go version gol.19.8 linux/amd64

go env GOPATH # ok : /home/emoc/go

Helloworld en Go

Créer un fichier vide helloworld.go
nano helloworld.go

Le fichier helloworld.go contient

main
I —

func main() {
fmt.Println("HelloWorld, Golang!")
}

Puis
go run hello.go
Comment compiler ce programme pour qu'il puisse étre utilisé comme une commande ?

Il faut le transformer en module

go mod init example/helloworld # donner un nom et chemin au module
go mod tidy # récupérer les dépendances
go build -o helloworld # créer le binaire «helloworld»

mv ./helloworld ../bin/helloworld

Maintenant on peut déclencher la commande avec

~/go/bin/helloworld

Utilisation de Simplify

Simplify est un logiciel en ligne de commande de Michael Fogleman qui permet de réduire le nombre de faces d'un objet 3D
au format .STL. Simplify est programmé en Go

https://github.com/fogleman/simplify

installer Go (voir ci-dessus)

mkdir ~/go/bin

go install github.com/fogleman/simplify/cmd/simplify@latest

réduction a 10% des faces de 1'objet (652 faces -> 64 faces)
~/go/bin/simplify -f 0.1 parasect.stl parasect-0.1.stl

Comparaison (objet original : parasect)

Utilisation de In

Pour transformer un objet 3D au format .OB]J en fichier .SVG

git clone https://github.com/fogleman/ln.git
cd 1n

http://lesporteslogiques.net/wiki/ 2/8

https://github.com/fogleman/simplify
https://models.spriters-resource.com/nintendo_64/pokemonstadium2/asset/287712/
http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/parasect_comparaison_reduction_de_faces.png

go mod init 1n/ln
go mod tidy

placer le fichier teapot.obj dans le dossier et créer le fichier teapot.go :

main
"github.com/fogleman/ln/1n"

func main() {
scene := ln.Scene{}
mesh, err := ln.LoadOBJ("teapot.obj")
err != nil {
panic(err)

}

mesh.UnitCube()

scene.Add (ln.NewTransformedShape(mesh, ln.Rotate(ln.Vector{0, 1, 0}, 0.5)))
// scene.Add(mesh)

eye := ln.Vector{-0.5, 0.5, 2}

center := ln.Vector{}

up := ln.Vector{0d, 1, 0}

width := 1024.0

height := 1024.0

paths := scene.Render(eye, center, up, width, height, 35, 0.1, 100, 0.01)
paths.WriteToPNG("teapot.png", width, height)
paths.WriteToSVG("teapot.svg", width, height)

Puis
go run teapot.go

Ca marche! Le fichier svg est créé, en fonction du point de vue défini dans le script go, les faces qui doivent I'étre sont
cachées.

Transformer en exécutable.

La commande est lancée depuis le répertoire courant dans lequel se trouve le fichier teapot.obj, les fichiers résultants
(teapot.png et teapot.svg) sont créés dans le répertoire courant.

go build -o teapot # construire le binaire

mv teapot ../bin/teapot # déplacer dans le dossier ~/go/bin
~/go/bin/teapot # lancer la commande depuis le répertoire courant
On obtient

46 11 Do erED L

< xx #as xs0e 0

Extrait du fichier svg

<svg width="1024.000000" height="1024.000000" version="1.1" baseProfile="full" xmlns="http://www.w3.0rg/2000/svg">
<g transform="translate(0,1024.000000) scale(1l,-1)">

<polyline stroke="black" fill="none" points="628.113702,626.372774 630.057369,626.470582" />
<polyline stroke="black" fill="none" points="630.057369,626.470582 612.007059,629.402582" />
<polyline stroke="black" fill="none" points="646.867425,619.146177 645.594080,623.083557" />
<polyline stroke="black" fill="none" points="645.594080,623.083557 641.262088,622.941587" />
<polyline stroke="black" fill="none" points="639.714178,622.890858 645.594080,623.083557" />
<polyline stroke="black" fill="none" points="645.594080,623.083557 630.057369,626.470582" />
<polyline stroke="black" fill="none" points="646.867425,619.146177 659.738739,615.250381" />
<polyline stroke="black" fill="none" points="659.738739,615.250381 658.331336,619.276179" />

. etc.

En manipulant, on dirait bien que les tracés sont doublés

obj2svg

Je cherche a créer une commande qui soit accessible de n'importe ou qui permette de transformer un objet 3D au format
.OBJ en image png et fichier SVG du maillage

http://lesporteslogiques.net/wiki/ 3/8

http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/teapot_dans_inkscape.png

Créer le dossier et le fichier

mkdir test obj2svg
cd test obj2svg
touch obj2svg.go # puis l'éditer

obj2svg.go (cliquer pour afficher le code)

obj2svg.go

<code go>
main

(
“fmt"
"flag"

"github.com/fogleman/ln/1n"
)

func main() {
// Parsing des arguments
flag.Parse()
args := flag.Args()

len(args) != 1 {
fmt.Println("Usage: obj2svg input.obj -> créera 2 fichiers input.obj.png et input.obj.svg")

}
pngfilename := args[0] + ".png"
svgfilename := args[0] + ".svg"

fmt.Printf("pngfilename %s\n", pngfilename)
fmt.Printf("svgfilename %s\n", svgfilename)

scene := ln.Scene{}
fmt.Printf("Loading %s\n", args[0])
mesh, err := ln.LoadOBJ(args[0])

err !'= nil {

panic(err)

}
mesh.UnitCube()
scene.Add(ln.NewTransformedShape (mesh, ln.Rotate(ln.Vector{0, 1, 0}, 0.5)))
// scene.Add(mesh)
eye := ln.Vector{-0.5, 0.5, 2}
center := ln.Vector{}
up := ln.Vector{0d, 1, 0}
width := 1024.0
height := 1024.0
paths := scene.Render(eye, center, up, width, height, 35, 0.1, 100, 0.01)
paths.WriteToPNG(pngfilename, width, height)
paths.WriteToSVG(svgfilename, width, height)

Puis

go mod init example/obj2svg # initialiser le module

go mod tidy # charger les dépendances

go run obj2svg.go teapot.obj # ok, tout fonctionne

go build -o obj2svg # construire 1'exécutable

mv obj2svg ../bin/obj2svg # le placer dans le bon dossier

Maintenant on peut exécuter la commande suivante dans n'importe quel dossier
~/go/bin/obj2svg teapot.obj

TODO : permettre la rotation de la vue

rendu wireframe avec blender CLI + gif

http://lesporteslogiques.net/wiki/

4/8

http://lesporteslogiques.net/wiki/_export/code/recherche/residence_polygones/mesh2svg2paper?codeblock=3

Script python blender a utiliser en ligne de commande avec

blender --background --python blender_teapot wireframe_views.py
blender_teapot_wireframe_views.py (cliquer pour afficher le code)

blender_teapot_wireframe_views.py

Blender 3.4.1
Debian 12 @ tenko
20251109, résidence polygones @ Fablab des portes logiques

bpy

math
3
Rendu wireframe "propre" 600x600
U

Supprimer tous les objets existants
bpy.ops.wm.read factory settings(use_empty=True

Importer le STL
bpy.ops.import mesh.stl(filepath="teapot.stl"
obj bpy.context.selected objects|[0

Supprimer tous les matériaux existants
obj.data.materials.clear

Ajouter un modifier wireframe
mod obj.modifiers.new(name="WireframeMod", type='WIREFRAME'
mod. thickness 0.02 # épaisseur des lignes

Créer un matériau noir shadeless pour le wireframe
mat bpy.data.materials.new(name="WireMat"
mat.diffuse _color 0,0, 0,1

mat.use nodes = True

bsdf = mat.node tree.nodes.get("Principled BSDF"
bsdf.inputs|['Base Color'].default_value 06, 0, 0, 1
bsdf.inputs|'Specular'].default value = 0
bsdf.inputs|'Roughness'].default_value 1
obj.data.materials.append(mat

Ajouter une caméra

cam_data = bpy.data.cameras.new(name="Camera"
cam_object bpy.data.objects.new("Camera", cam_ data
bpy.context.collection.objects.link(cam_object
bpy.context.scene.camera cam_object

Parametres de rendu

scene = bpy.context.scene

scene.render.image settings.file format 'PNG'
scene.render.resolution x = 600
scene.render.resolution y = 600
scene.render.film_transparent = False # fond blanc
scene.render.film transparent glass = False

Désactiver l’anti-aliasing

scene.render.use antialiasing = False

scene.render.engine 'BLENDER _EEVEE' # moteur Eevee plus simple
Eevee anti-aliasing quasi désactivé
scene.eevee.taa_render_samples = 1

Récupérer la scene
scene bpy.context.scene

Créer un monde si nécessaire
scene.world None:

http://lesporteslogiques.net/wiki/

http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/teapot_wire.gif
http://lesporteslogiques.net/wiki/_export/code/recherche/residence_polygones/mesh2svg2paper?codeblock=4

world = bpy.data.worlds.new("World"
scene.world = world

Couleur de fond blanc

scene.world.use nodes = True

bg = scene.world.node_tree.nodes['Background’
bg.inputs|['Color'].default_value 1, 1, 1, 1) # blanc

Centrer la caméra autour de l'objet
center = obj.location

Paramétres rotation

n_views = 30

radius = 10 # distance caméra
elevation = 5

for i in range(n_views):
angle = 2 * math.pi * i / n_views
cam_object.location.x = center.x + radius * math.cos(angle
cam _object.location.y = center.y + radius * math.sin(angle
cam_object.location.z = center.z + elevation

Orienter la caméra vers le centre

direction = center - cam_object.location
rot_quat = direction.to_track quat('-Z', 'Y'
cam_object.rotation euler = rot_quat.to euler

Nom du fichier
scene.render.filepath f"teapot wire {i:02d}.png"

Rendu
bpy.ops.render.render(write_still=True

Ensuite on peut assembler les images avec

convert teapot_wire *.png -threshold 50% -colors 2 -resize 600x600 teapot wire.gif

Version alternative qui affiche également les faces (et masque les faces cachées)

blender --background --python blender teapot facewire.py # calculer les rendus d'image
convert teapot facewire *.png -threshold 50% -colors 2 -resize 300x300 teapot facewire.gif # préparer 1'animation

blender_teapot_facewire.py (cliquer pour afficher le code)

blender_teapot_facewire.py

Blender 3.4.1
Debian 12 @ tenko
20251109, résidence polygones @ Fablab des portes logiques

import bpy
import math

Supprimer tous les objets existants
bpy.ops.wm.read factory settings(use empty=True

Importer le STL
bpy.ops.import mesh.stl(filepath="teapot.stl"
obj bpy.context.selected objects[0

http://lesporteslogiques.net/wiki/

6/8

http://lesporteslogiques.net/wiki/_media/recherche/residence_polygones/teapot_facewire.gif
http://lesporteslogiques.net/wiki/_export/code/recherche/residence_polygones/mesh2svg2paper?codeblock=5

Supprimer tous les matériaux existants
obj.data.materials.clear()

mat = bpy.data.materials.new("FaceWhite")

mat.use nodes = True

bsdf = mat.node_tree.nodes["Principled BSDF"]

bsdf.inputs|'Base Color'].default value = (1, 1, 1, 1) # blanc
bsdf.inputs|'Specular'].default_value = 0
obj.data.materials.append(mat)

Ajouter un modifier wireframe

mod = obj.modifiers.new(name="WireframeMod", type='WIREFRAME')
mod.thickness = 0.02

mod.use replace = False # conserve faces originales

Création d’un second matériau pour le wireframe
wire_mat = bpy.data.materials.new("WireBlack")
wire_mat.use_nodes = True

nodes = wire mat.node tree.nodes

bsdf wire = nodes.get("Principled BSDF")
bsdf_wire.inputs|['Base Color'].default value =
bsdf _wire.inputs|['Specular'].default value = 0
obj.data.materials.append(wire_mat)

(0, 0, 0, 1) # noir

Associer le modifier wireframe au matériau noir
mod.material_offset = 1 # utilise le second matériau

cam_data = bpy.data.cameras.new(name="Camera")
cam_object = bpy.data.objects.new("Camera", cam_data)
bpy.context.collection.objects.link(cam_object)
bpy.context.scene.camera = cam_object

Parametres de rendu

scene = bpy.context.scene
scene.render.image_settings.file format = 'PNG'
scene.render.resolution x = 600

scene.render.resolution_y = 600

scene.render.film transparent = False # fond blanc
scene.render.engine = 'BLENDER EEVEE'
scene.eevee.taa_render_samples = 1 # anti-aliasing minimal

Fond blanc
if scene.world is None:
world = bpy.data.worlds.new("World")
scene.world = world
scene.world.use nodes = True
bg = scene.world.node tree.nodes|'Background']
bg.inputs|['Color'].default value = (1, 1, 1, 1) # blanc

center = obj.location
n_views = 30

radius = 10

elevation = 5

for 1 in range(n_views):
angle = 2 * math.pi * i / n_views
cam_object.location.x = center.x + radius * math.cos(angle)
cam_object.location.y = center.y + radius * math.sin(angle)
cam_object.location.z = center.z + elevation

Orienter la caméra vers le centre de l'objet
direction = center - cam_object.location
rot_quat = direction.to_track quat('-z', 'Y')
cam_object.rotation euler = rot_quat.to_euler()

Nom du fichier
scene.render.filepath = f"teapot facewire {i:02d}.png"

Rendu
bpy.ops.render.render(write_still=True)

Autres trucs intéressants a essayer

removeduplicatelines : une extension inkscape qui enléve les segments dupliqués :

http://lesporteslogiques.net/wiki/

https://cutlings.datafil.no/inkscape-extension-removeduplicatelines/

deduplicate plugin vpype pour enlever les lignes en doublon dans un fichier svg
https://github.com/LoicGoulefert/deduplicate

occult plugin vpype pour masquer les faces cachées d'un fichier svg https://github.com/LoicGoulefert/occult

vpype «vpype is an extensible CLI pipeline utility which aims to be the Swiss Army knife for creating, modifying and/or
optimizing plotter-ready vector graphics» https://vpype.readthedocs.io/en/latest/install.html#linux

Article extrait de : http://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques

Adresse :
http://lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper?rev=1762715596
Article mis a jour: 2025/11/09 20:13

http://lesporteslogiques.net/wiki/

8/8

https://cutlings.datafil.no/inkscape-extension-removeduplicatelines/
https://github.com/LoicGoulefert/deduplicate
https://github.com/LoicGoulefert/occult
https://vpype.readthedocs.io/en/latest/install.html#linux
http://lesporteslogiques.net/wiki/
http://lesporteslogiques.net/wiki/recherche/residence_polygones/mesh2svg2paper?rev=1762715596

	mesh 2 svg 2 paper
	Conversion de formats 3D en ligne de commande
	Affichage d'objets STL
	Installation de Go
	Helloworld en Go

	Utilisation de Simplify
	Utilisation de ln
	obj2svg
	rendu wireframe avec blender CLI + gif
	Autres trucs intéressants à essayer

