WIKI Les Portes Logiques
Adresse de l'article : http://lesporteslogiques.net/wiki/ressource/code/processing/shaders
Article mis a jour le : 2023/04/25 18:13 / Imprimé le 2026/01/29 10:19

processing, shaders

Initiation aux Shaders avec Processing

Le hello World des shaders

Les fichiers vert.glsl et frag.glsl sont a placer dans le dossier data du sketch.

shader_01

vert.gls|

uniform mat4 transformMatrix

attribute vec4 position
attribute vec4 color

varying vec4 vertColor

void main
gl_Position = transformMatrix * position

vertColor = color

frag.glsl

#ifdef GL ES

precision mediump float
precision mediump int
#endif

varying vec4 vertColor

void main
gl_FragColor vertColor

shader_01.pde

PShader myShader
int margin

void setup
size , , P2D

myShader = loadShader("frag.glsl", "vert.glsl"
noStroke

void draw
background
shader (myShader
fill , ,
rect(margin, margin, width margin, height margin
resetShader // Désactive le shader, permet de redessiner normalement

Communication entre l'application et les shaders

http://lesporteslogiques.net/wiki/

http://lesporteslogiques.net/wiki/tag/processing?do=showtag&tag=processing
http://lesporteslogiques.net/wiki/tag/shaders?do=showtag&tag=shaders
http://lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=0
http://lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=1
http://lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=2
http://lesporteslogiques.net/wiki/ressource/code/processing/shaders

GPUL
\hrhx S\aécf

L'application (programme Processing) peut envoyer des données vers les shaders par des variable déclarées avec le mot-clé

uniform.

Fonctions GLSL
e step(seuil, val)
Renvoi 0. si val < seuil, renvoi 1. si val > seulil

smoothstep(seuill, seuil2, val)
clamp()

pow()

fract()

Returns the fractional part of a number
e mod(a, b)
a modulo b

e |ength()
e atan(y,x)
e mix(vl, v2, pct)

Interpolation linéaire entre v1 et v2 en fonction de 'pct’
e sign(float val)

Renvoi -1 si val est négatif, 1 si val est positif

Fonctions Processing pour transmettre des données

set(String name, int x)

set(String name, int x, int y) -> vec2

set(String name, int x, int y, int z) -> vec3
set(String name, int x, int y, int z, int w) -> vec4d
set(String name, float x, ...)

set(String name, PVector vec) -> vec3

set(String name, int[] vec, int ncoords) // Jusqu'a 4 coordonnées par élément
set(String name, float[] vec, int ncoords)

set(String name, PMatrix2D mat) -> mat2
set(String name, PMatrix3D mat) -> mat4

set(String name, PImage tex) -> sampler2D

Attention ! Lorsqu'on transmet des nombres entiers, comme par exemple
s{r d'avoir déclaré les variables uniform pour des types entiers, comme

Une autre solution est de les convertir en nombres flottants avant de les transmettre : set (“u_resolution”,

float(512), float(512))

:set(“u _resolution”, 512, 512), soyez

»ivec?2, ivec3...

http://lesporteslogiques.net/wiki/

Variables uniform communes a tous les shaders dans Processing

Certaines variables uniform sont définies dans Processing et sont disponibles dans tous les shaders.
Elles sont déclarées dans le fichier PShader. java de Processing.

uniform mat4 transformMatrix; // la matrice de model view projection pour transformer les coordonnées du vertex du model space au clip space
uniform mat4 projectionMatrix; // la matrice de projection permet de passer du camera space au clip space

uniform mat4 modelviewMatrix; // la matrice modelview permet de passer du model space au world space puis au camera space

uniform vec2 resolution; // contient la résolution de notre fenétre

uniform vec4 viewport; // contient la position de notre fenétre ainsi que sa résolution

Textures

Pour sampler un texel en GLSL (extraire la couleur d'une texture a un point donné), on utilise la fonction:
texture2D(sampler2D image, vec2 uv)

Les coordonnes UV doivent étre comprises entre 0.0 et 1.0

Elles pour origine le coin bas-gauche (0, 0) contrairement aux coordonnées d'écran, qui ont pour origine le coin haut-gauche.

Utilisation d'un buffer hors-écran

Pratique pour créer des effets avec retour d'information (feedback), comme par exemple un effet de réaction-diffusion.

PGraphics buffer = createGraphics(x, y, P2D
buffer.beginDraw

buffer.shader(myShader

buffer.rect(0, 0, buffer.width, buffer.height
buffer.endDraw

image(buffer, 0, 0

Fonctions utiles

Couleur

Luminance

float luma(vec4 color
dot(color.rgb, vec3(0.299, 0.587, 0.114

Brightness

float brightness(vec4 color
dot(color.rgb , vec3(0.2126 0.7152 0.0722

HSB -> RGB

vec3 hsb2rgb(in vec3 c
vec3 rgb clamp(abs(mod(c.x*6.0+vec3(0.0,4.0,2.0
6.0)-3.0)-1.0
0.0
1.0
rgb rgb*rgb*(3.0-2.0*%rgb
c.z * mix(vec3(1.0 rgb, c.y

RGB -> HSB

vec3 rgb2hsb(in vec3 c
vec4 K vec4 (0.0 1.0 3.0, 2.0 3.0 1.0

vecd p = mix(vecd(c.bg, K.wz
vecd(c.gb, K.xy
step(c.b, c.g

vecd q mix(vecd(p.xyw, c.r
vecd(c.r, p.yzx
step(p.x, c.r

http://lesporteslogiques.net/wiki/ 3/6

float d = q.x - min(q.w, q.y);

float e = 1.0e-10;

return vec3(abs(g.z + (q.w - q.y) / (6.0 *d + e)),
d/ (g.x +e),
q.x);

Random

float random2d(vec2 coord)

{

return fract(sin(dot(coord.xy, vec2(12.9898, 78.233)))
}
Noise

Gradient noise

// 2D Noise based on Morgan McGuire @morgan3d
// https://www.shadertoy.com/view/4dS3wWd
float noise (in vec2 coord) {

vec2 i = floor(coord);

vec2 f = fract(coord);

// Four corners in 2D of a tile
float a = random(i);

float b = random(i + vec2(1.0, 0.0));
float c = random(i + vec2(0.0, 1.0));
float d = random(i + vec2(1.0, 1.0));

// Smooth Interpolation

// Cubic Hermite Curve. Same as SmoothStep()
vec2 u = fHfH(3.0-2.0°F);
// u = smoothstep(0.,1.,f);

// Mix 4 coorners percentages
return mix(a, b, u.x) +

(c - a)fuy* (1.0 - ux +
(d - b) “ux *u.y;

Fractional Brownian Motion

float hash(vec2 coord)

{
return fract(sin(dot(coord.xy, vec2(12.9898, 78.233)))
}
float noise(vec2 U)
{
vec2 id = floor(U);
U = fract(U);
Uu*=u=* (3. -2.%U);
vec2 A = vec2(hash(id), hash(id + vec2(0,1))),
B = vec2(hash(id + vec2(1,0)), hash(id + vec2(1,1)
C = mix(A, B, U.x);
return mix(C.x, C.y, U.y);
}
/**
fBM stands for Fractional Brownian Motion
https://iquilezles.org/articles/fbm/
Set octave to 8 for a detailed noise
A value of 1.0 for H is good
*/
float fbm(vec2 x, float H, int octave)
{
float G = exp2(-H);
float f = 1.0;
float a = 1.0;
float t = 0.0;
for(int i=0; i<octave; i++)
{
t += a‘*noise(f*x);
f *= 2.0;
a = G;
}
return t;
}

* 43758.5453123);

* 43758.5453123);

),

http://lesporteslogiques.net/wiki/

4/6

Simplex noise

//

// Description : GLSL 2D simplex noise function
// Author : Ian McEwan, Ashima Arts

// Maintainer : ijm

// Lastmod : 20110822 (ijm)

// License :

// Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise

// Some useful functions

vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0;
vec2 mod289(vec2 x) { return x - floor(x * (1.0 / 289.0)) * 289.0;
vec3 permute(vec3 x) { return mod289(((x*34.0)+1.0)*x); }

float snoise(vec2 v) {

// Precompute values for skewed triangular grid
const vec4 C = vecd(0.211324865405187,
// (3.0-sqrt(3.0))/6.0
0.366025403784439,
// 0.5%(sqrt(3.0)-1.0)
-0.577350269189626,
// -1.0 + 2.0 * C.x
0.024390243902439) ;
// 1.0 / 41.0

// First corner (x0)
vec2 i = floor(v + dot(v, C.yy));
vec2 x0 = v - 1 + dot(i, C.xx);

// Other two corners (x1, x2)

vec2 il = vec2(0.0);

il = (x0.x > x0.y)? vec2(1.0, 0.0):vec2(0.0, 1.0);
vec2 x1 = x0.xy + C.xx - il;

vec2 x2 = x0.xy + C.zz;

// Do some permutations to avoid
// truncation effects in permutation
i = mod289(i);
vec3 p = permute(
permute(i.y + vec3(0.0, il.y, 1.0))
+ 1i.x + vec3(0.0, il.x, 1.0));

vec3 m = max(0.5 - vec3

(
dot(x0,x0)
dot(x1,x1)
dot(x2,x2)
), 0.0);

m=mm ;
m=mm ;

// Gradients:

// 41 pts uniformly over a line, mapped onto a diamond
// The ring size 17*17 = 289 is close to a multiple

// of 41 (41*7 = 287)

vec3 x = 2.0 * fract(p * C.www) - 1.0;
vec3 h = abs(x) - 0.5;

vec3 ox = floor(x + 0.5);

vec3 ad = x - ox;

// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt(a®*a@ + h*h);
m = 1.79284291400159 - 0.85373472095314 * (a@*a0+h*h);

// Compute final noise value at P

vec3 g = vec3(0.0);

g.x =ab.x * x0.x + h.x *x0.y;

g.yz = a@.yz * vec2(x1l.x,x2.x) + h.yz * vec2(x1l.y,x2.y);
return 130.0 * dot(m, g);

}

Rotations

2D

mat2 rotation2d(float a) {
float c=cos(a);
float s=sin(a);
return mat2(c,-s,s,c);

i

vec2 rotate(vec2 v, float angle) {

http://lesporteslogiques.net/wiki/

rotation2d(angle v

3D

mat4 rotation3d(vec3 axis, float angle
axis normalize(axis
float s = sin(angle
float ¢ = cos(angle

float oc [«
mat4
oc axis.x * axis.x + ¢ oc axis.x * axis.y - axis.z s oc * axis.z axis.x + axis.y s
oc axis.x * axis.y axis.z s oc axis.y * axis.y ¢ oc * axis.y * axis.z axis.x s

oc axis.z axis.x axis.y s oc axis.y * axis.z axis.x s oc * axis.z axis.z c

vec3 rotate(vec3 v, vec3 axis, float angle
rotation3d(axis, angle vecd (v Xyz

Flou Gaussien

Code optimisé, d'apres https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
A exécuter en deux passes : horizontale et verticale
vec4 blur(sampler2D image, vec2 uv, vec2 resolution, vec2 direction

const float offset float
const float weight float

vec4 colorOut = texture2D(image, uv resolution weight

int 1 i i
vec3 color = texture2D(image uv + direction offset|i resolution
color texture2D(image uv - direction offset|i resolution
colorOut color * weight[i
colorOut

Librairies Processing
Quelques librairies externes pour |'utilisation de shaders dans Processing :

e https://github.com/diwi/PixelFlow

Ressources
Liste de liens incontournables pour approfondir et aller plus loin...

e https://thebookofshaders.com/
e https://www.shadertoy.com
e https://iquilezles.org/articles/functions/

Article extrait de : http://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://lesporteslogiques.net/wiki/ressource/code/processing/shaders
Article mis a jour: 2023/04/25 18:13

http://lesporteslogiques.net/wiki/

6/6

https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
https://github.com/diwi/PixelFlow
https://thebookofshaders.com/
https://www.shadertoy.com
https://iquilezles.org/articles/functions/
http://lesporteslogiques.net/wiki/
http://lesporteslogiques.net/wiki/ressource/code/processing/shaders

	Initiation aux Shaders avec Processing
	Le hello World des shaders
	Communication entre l'application et les shaders
	Fonctions GLSL
	Fonctions Processing pour transmettre des données
	Variables uniform communes à tous les shaders dans Processing

	Textures
	Utilisation d'un buffer hors-écran
	Fonctions utiles
	Couleur
	Luminance
	Brightness
	HSB -> RGB
	RGB -> HSB

	Random
	Noise
	Gradient noise
	Fractional Brownian Motion
	Simplex noise

	Rotations
	2D
	3D

	Flou Gaussien

	Librairies Processing
	Ressources

