WIKI Les Portes Logiques
Adresse de l'article : http://lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662540813
Article mis a jour le : 2022/09/07 10:53 / Imprimé le 2026/01/29 13:23

Initiation aux Shaders avec Processing

Le hello World des shaders

shader 01

vert.gls|
uniform mat4 transformMatrix

attribute vec4 position
attribute vec4 color

varying vec4 vertColor

void main
gl_Position = transformMatrix * position

vertColor = color

freg.glsl

#ifdef GL ES

precision mediump float
precision mediump int
#endif

varying vec4 vertColor

void main
gl_FragColor = vertColor

shader_01.pde

PShader myShader
int margin

void setup
size , , P2D

myShader = loadShader("frag.glsl", "vert.glsl"
noStroke

void draw
background
shader (myShader
fill , ,
rect(margin, margin, width margin, height margin
resetShader // Désactive le shader, permet de redessiner normalement

Communication entre l'application et les shaders

L'application (programme Processing) peut envoyer des données vers les shaders par des variable déclarées avec le mot-clé
uniform.

Fonctions Processing pour transmettre des données

set(String name, int x)

set(String name, int x, int y) -> vec2

set(String name, int x, int y, int z) -> vec3
set(String name, int x, int y, int z, int w) -> vec4d
set(String name, float x, ...)

set(String name, PVector vec) -> vec3

set(String name, int[] vec, int ncoords) // Jusqu'a 4 coordonnées par élément
set(String name, float[] vec, int ncoords)

set(String name, PMatrix2D mat) -> mat2
set(String name, PMatrix3D mat) -> mat4

http://lesporteslogiques.net/wiki/ 1/5

http://lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=0
http://lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=1
http://lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=2
http://lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662540813

set(String name, PImage tex) -> sampler2D

Attention ! Lorsqu'on transmet des nombres entiers, comme par exemple : set(“u_resolution”, 512, 512), soyez
s@r d'avoir déclaré les variables uniform pour des types entiers, comme : ivec2, ivec3...

Une autre solution est de les convertir en nombres flottants avant de les transmettre : set(“u_resolution”,
float(512), float(512))

Textures
Fonctions utiles

Couleur

Luminance

float luma(vecd4 color
dot(color.rgb, vec3

Brightness

float brightness(vec4 color
dot(color.rghb , vec3

HSB -> RGB

vec3 hsb2rgb(in vec3 c

vec3 rgb clamp(abs(mod(c.x vec3
rgb rgb*rgb rgb
c.z * mix(vec3 rgb, c.y
RGB -> HSB

vec3 rgb2hsb(in vec3 ¢
vecd K vec4d

vec4 p = mix(vecd(c.bg, K.wz
vecd(c.gb, K.xy
step(c.b, c.g
vec4 q mix(vecd(p.xyw, c.r
vecd(c.r, p.yzx
step(p.x, c.r
float d = q.x in(q.w, q.y
float e = 1.0e-10
vec3(abs(q.z q.w - g.y d e
d q.x + e

q.X

Random

float random2d(vec2 coord

fract(sin(dot(coord.xy, vec2

Noise

Gradient noise

// 2D Noise based on Morgan McGuire @morgan3d
// https://www.shadertoy.com/view/4dS3Wd
float noise (in vec2 coord

http://lesporteslogiques.net/wiki/ 2/5

vec2 i = floor(coord);
vec2 f = fract(coord);

// Four corners in 2D of a tile
float a = random(1i);

float b = random(i + vec2(1.0, 0.0
float ¢ = random(i + vec2(0.0, 1.0
float d = random(i + vec2(1.0, 1.0

));
));
,)

// Smooth Interpolation

// Cubic Hermite Curve. Same as SmoothStep()
vec2 u = fHf*(3.0-2.0%f);
// u = smoothstep(0.,1.,f);

// Mix 4 coorners percentages
return mix(a, b, u.x) +

(c - a)fuy* (1.0 - ux) +
(d - b) *u.x *uy;

Fractional Brownian Motion

float hash(vec2 coord)

{
return fract(sin(dot(coord.xy, vec2(12.9898, 78.233))) * 43758.5453123);
}
float noise(vec2 U)
{
vec2 id = floor(U);
U = fract(U);
Uu*s=u=* (3. -2 *U);
vec2 A = vec2(hash(id), hash(id + vec2(0,1))),
B = vec2(hash(id + vec2(1,0)), hash(id + vec2(1,1))),
C = mix(A, B, U.x);
return mix(C.x, C.y, U.y);
}
Vaks
fBM stands for Fractional Brownian Motion
https://iquilezles.org/articles/fbm/
Set octave to 8 for a detailed noise
A value of 1.0 for H is good
*/
float fbm(vec2 x, float H, int octave)
{
float G = exp2(-H);
float f = 1.0;
float a = 1.0;
float t = 0.0;
for(int i=0; i<octave; i++)
{
t += a'noise(f*x);
f *= 2.0;
a = G;
}
return t;
}

Simplex noise

//

// Description : GLSL 2D simplex noise function
// Author : Ian McEwan, Ashima Arts

// Maintainer : ijm

// Lastmod : 20110822 (ijm)

// License :

// Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise

// Some useful functions

vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec2 mod289(vec2 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec3 permute(vec3 x) { return mod289(((x*34.0)+1.0)*x); *

float snoise(vec2 v) {

// Precompute values for skewed triangular grid
const vecd C = vecd(0.211324865405187,
// (3.0-sqrt(3.0))/6.0
0.366025403784439,
// 0.5%(sqrt(3.0)-1.0)
-0.577350269189626,

http://lesporteslogiques.net/wiki/

// -1.0 + 2.0 * C.x
0.024390243902439) ;
// 1.0 / 41.0

// First corner (x0)

vec2 i = floor(v + dot(v, C.yy));

vec2 x0 = v - 1 + dot(i, C.xx);

// Other two corners (x1, x2)
vec2 il = vec2(0.0);

il = (x0.x > x0.y)? vec2(1.0, 0.0):vec2(0.0, 1.0);

vec2 x1 = x0.xy + C.xx - il;
vec2 x2 = x0.xy + C.zz;

// Do some permutations to avoid
// truncation effects in permutation

i = mod289(1i);
vec3 p = permute(

permute(i.y + vec3(0.0, il.y, 1.0))

+ 1i.x + vec3(0.0, il.x,

vec3 m = max(0.5 - vec3

(
dot(x0,x0),
dot(x1,x1)
dot(x2,x2)
), 0.0);

m=mm ;
m=mm ;

// Gradients:

1.0));

// 41 pts uniformly over a line, mapped onto a diamond
// The ring size 17*17 = 289 is close to a multiple

// of 41 (41*7 = 287)

vec3 x = 2.0 * fract(p * C.www) - 1.0;

vec3 h = abs(x) - 0.5;
vec3 ox = floor(x + 0.5);
vec3 ad = x - ox;

// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt(a@*a@ + h*h);

m *= 1.79284291400159 - 0.85373472095314 *

// Compute final noise value at P

vec3 g = vec3(0.0);

g.x =ab.x " x0.x + h.x *x0.y;
g.yz = a@.yz * vec2(x1l.x,x2.x) + h.yz * vec2(x1l.y,x2.y);

return 130.0 * dot(m, g);

Rotations

2D

mat2 rotation2d(f
float c=cos(a

(a

(c

loat a) {
)
)

float s=sin
return mat2

,-5,5,C);
}

vec2 rotate(vec2 v, float angle) {
return rotation2d(angle) * v;
}

3D

mat4 rotation3d(vec3 axis, float angle) {

axis = normalize(axis);
float s = sin(angle);
float c = cos(angle);
float oc = 1.0 - c;

return mat4(

oc * axis.x * axis.x + cC,

oc * axis.x * axis.y + axis.z *
oc * axis.z * axis.x - axis.y *
0.0,

)i
}

vec3 rotate(vec3 v, vec3 axis, float angle) {

return (rotation3d(axis, angle)
1
I

S,
S,

(a0*a0+h*h)

oc * axis.x * axis.y - axis.z * s,
oc * axis.y * axis.y + c,
oc * axis.y * axis.z + axis.x * s,

0.0,

“ vecd(v,

1.0)).xyz;

oc *
oc *
oc ~
0.0,

axis.z * axis.x + axis.y * s,
axis.y * axis.z - axis.x * s,
axis.z * axis.z + c,

oo
[oN NN

http://lesporteslogiques.net/wiki/

4/5

Flou Gaussien

Code optimisé, d'apres https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
A exécuter en deux passes : horizontale et verticale

vecd blur(sampler2D image, vec2 uv, vec2 resolution, vec2 direction

const float offset float
const float weight float
vec4 colorOut texture2D(image, uv resolution weight
int i i i
vec3 color = texture2D(image uv + direction offset[i resolution
color texture2D(image uv - direction offset[i resolution
colorOut color * weight[i
colorQut

Librairies Processing
Quelques librairies externes pour I'utilisation de shaders dans Processing :

e https://github.com/diwi/PixelFlow

Ressources
Liste de liens incontournables pour approfondir et aller plus loin...

e https://thebookofshaders.com/
e https://www.shadertoy.com
e https://iquilezles.org/articles/functions/

Article extrait de : http://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662540813
Article mis a jour: 2022/09/07 10:53

http://lesporteslogiques.net/wiki/

https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
https://github.com/diwi/PixelFlow
https://thebookofshaders.com/
https://www.shadertoy.com
https://iquilezles.org/articles/functions/
http://lesporteslogiques.net/wiki/
http://lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662540813

	Initiation aux Shaders avec Processing
	Le hello World des shaders
	Communication entre l'application et les shaders
	Fonctions Processing pour transmettre des données

	Textures
	Fonctions utiles
	Couleur
	Luminance
	Brightness
	HSB -> RGB
	RGB -> HSB

	Random
	Noise
	Gradient noise
	Fractional Brownian Motion
	Simplex noise

	Rotations
	2D
	3D

	Flou Gaussien

	Librairies Processing
	Ressources

