
WIKI Les Portes Logiques
Adresse de l'article : http://lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662541406
Article mis à jour le : 2022/09/07 11:03 / Imprimé le 2026/01/29 13:23

http://lesporteslogiques.net/wiki/ 1 / 5

Initiation aux Shaders avec Processing
Le hello World des shaders
shader_01

vert.glsl

uniform mat4 transformMatrix;

attribute vec4 position;
attribute vec4 color;

varying vec4 vertColor;

void main() {
 gl_Position = transformMatrix * position;

 vertColor = color;
}

freg.glsl

#ifdef GL_ES
precision mediump float;
precision mediump int;
#endif

varying vec4 vertColor;

void main() {
 gl_FragColor = vertColor;
}

shader_01.pde

PShader myShader;
int margin = 32;

void setup() {
 size(800, 600, P2D);

 myShader = loadShader("frag.glsl", "vert.glsl");
 noStroke();
}

void draw() {
 background(0);
 shader(myShader);
 fill(230, 120, 0);
 rect(margin, margin, width - 2*margin, height - 2*margin);
 resetShader(); // Désactive le shader, permet de redessiner normalement
}

Communication entre l'application et les shaders
L'application (programme Processing) peut envoyer des données vers les shaders par des variable déclarées avec le mot-clé
uniform.

Fonctions Processing pour transmettre des données
set(String name, int x)
set(String name, int x, int y) -> vec2
set(String name, int x, int y, int z) -> vec3
set(String name, int x, int y, int z, int w) -> vec4
set(String name, float x, ...)
set(String name, PVector vec) -> vec3

set(String name, int[] vec, int ncoords) // Jusqu'à 4 coordonnées par élément
set(String name, float[] vec, int ncoords)

set(String name, PMatrix2D mat) -> mat2
set(String name, PMatrix3D mat) -> mat4

http://lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=0
http://lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=1
http://lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=2
http://lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662541406

http://lesporteslogiques.net/wiki/ 2 / 5

set(String name, PImage tex) -> sampler2D

Attention ! Lorsqu'on transmet des nombres entiers, comme par exemple : set(“u_resolution”, 512, 512), soyez
sûr d'avoir déclaré les variables uniform pour des types entiers, comme : ivec2, ivec3…

Une autre solution est de les convertir en nombres flottants avant de les transmettre : set(“u_resolution”,
float(512), float(512))

Textures
Pour sampler un texel en GLSL (extraire la couleur d'une texture à un point donné), on utilise la fonction:
texture2D(sampler2D image, vec2 uv)
Les coordonnes UV doivent être comprises entre 0.0 et 1.0
Elles pour origine le coin bas-gauche (0, 0) contrairement aux coordonnées d'écran, qui ont pour origine le coin haut-gauche.

Utilisation d'un buffer hors-écran
Pratique pour créer des effets avec retour d'information (feedback), comme par exemple un effet de réaction-diffusion.

PGraphics buffer = createGraphics(x, y, P2D);

buffer.beginDraw();
buffer.shader(myShader);
buffer.rect(0, 0, buffer.width, buffer.height);
buffer.endDraw();

image(buffer, 0, 0);

Fonctions utiles
Couleur

Luminance

float luma(vec4 color) {
 return dot(color.rgb, vec3(0.299, 0.587, 0.114));
}

Brightness

float brightness(vec4 color) {
 return dot(color.rgb , vec3(0.2126 , 0.7152 , 0.0722));
}

HSB -> RGB

vec3 hsb2rgb(in vec3 c){
 vec3 rgb = clamp(abs(mod(c.x*6.0+vec3(0.0,4.0,2.0),
 6.0)-3.0)-1.0,
 0.0,
 1.0);
 rgb = rgb*rgb*(3.0-2.0*rgb);
 return c.z * mix(vec3(1.0), rgb, c.y);
}

RGB -> HSB

vec3 rgb2hsb(in vec3 c){
 vec4 K = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
 vec4 p = mix(vec4(c.bg, K.wz),
 vec4(c.gb, K.xy),
 step(c.b, c.g));
 vec4 q = mix(vec4(p.xyw, c.r),
 vec4(c.r, p.yzx),
 step(p.x, c.r));
 float d = q.x - min(q.w, q.y);
 float e = 1.0e-10;
 return vec3(abs(q.z + (q.w - q.y) / (6.0 * d + e)),

http://lesporteslogiques.net/wiki/ 3 / 5

 d / (q.x + e),
 q.x);
}

Random

float random2d(vec2 coord)
{
 return fract(sin(dot(coord.xy, vec2(12.9898, 78.233))) * 43758.5453123);
}

Noise

Gradient noise

// 2D Noise based on Morgan McGuire @morgan3d
// https://www.shadertoy.com/view/4dS3Wd
float noise (in vec2 coord) {
 vec2 i = floor(coord);
 vec2 f = fract(coord);

 // Four corners in 2D of a tile
 float a = random(i);
 float b = random(i + vec2(1.0, 0.0));
 float c = random(i + vec2(0.0, 1.0));
 float d = random(i + vec2(1.0, 1.0));

 // Smooth Interpolation

 // Cubic Hermite Curve. Same as SmoothStep()
 vec2 u = f*f*(3.0-2.0*f);
 // u = smoothstep(0.,1.,f);

 // Mix 4 coorners percentages
 return mix(a, b, u.x) +
 (c - a)* u.y * (1.0 - u.x) +
 (d - b) * u.x * u.y;
}

Fractional Brownian Motion

float hash(vec2 coord)
{
 return fract(sin(dot(coord.xy, vec2(12.9898, 78.233))) * 43758.5453123);
}

float noise(vec2 U)
{
 vec2 id = floor(U);
 U = fract(U);
 U *= U * (3. - 2. * U);

 vec2 A = vec2(hash(id), hash(id + vec2(0,1))),
 B = vec2(hash(id + vec2(1,0)), hash(id + vec2(1,1))),
 C = mix(A, B, U.x);

 return mix(C.x, C.y, U.y);
}

/**
 fBM stands for Fractional Brownian Motion
 https://iquilezles.org/articles/fbm/
 Set octave to 8 for a detailed noise
 A value of 1.0 for H is good
*/
float fbm(vec2 x, float H, int octave)
{
 float G = exp2(-H);
 float f = 1.0;
 float a = 1.0;
 float t = 0.0;
 for(int i=0; i<octave; i++)
 {
 t += a*noise(f*x);
 f *= 2.0;
 a *= G;
 }
 return t;
}

http://lesporteslogiques.net/wiki/ 4 / 5

Simplex noise

//
// Description : GLSL 2D simplex noise function
// Author : Ian McEwan, Ashima Arts
// Maintainer : ijm
// Lastmod : 20110822 (ijm)
// License :
// Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise
//

// Some useful functions
vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec2 mod289(vec2 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec3 permute(vec3 x) { return mod289(((x*34.0)+1.0)*x); }

float snoise(vec2 v) {

 // Precompute values for skewed triangular grid
 const vec4 C = vec4(0.211324865405187,
 // (3.0-sqrt(3.0))/6.0
 0.366025403784439,
 // 0.5*(sqrt(3.0)-1.0)
 -0.577350269189626,
 // -1.0 + 2.0 * C.x
 0.024390243902439);
 // 1.0 / 41.0

 // First corner (x0)
 vec2 i = floor(v + dot(v, C.yy));
 vec2 x0 = v - i + dot(i, C.xx);

 // Other two corners (x1, x2)
 vec2 i1 = vec2(0.0);
 i1 = (x0.x > x0.y)? vec2(1.0, 0.0):vec2(0.0, 1.0);
 vec2 x1 = x0.xy + C.xx - i1;
 vec2 x2 = x0.xy + C.zz;

 // Do some permutations to avoid
 // truncation effects in permutation
 i = mod289(i);
 vec3 p = permute(
 permute(i.y + vec3(0.0, i1.y, 1.0))
 + i.x + vec3(0.0, i1.x, 1.0));

 vec3 m = max(0.5 - vec3(
 dot(x0,x0),
 dot(x1,x1),
 dot(x2,x2)
), 0.0);

 m = m*m ;
 m = m*m ;

 // Gradients:
 // 41 pts uniformly over a line, mapped onto a diamond
 // The ring size 17*17 = 289 is close to a multiple
 // of 41 (41*7 = 287)

 vec3 x = 2.0 * fract(p * C.www) - 1.0;
 vec3 h = abs(x) - 0.5;
 vec3 ox = floor(x + 0.5);
 vec3 a0 = x - ox;

 // Normalise gradients implicitly by scaling m
 // Approximation of: m *= inversesqrt(a0*a0 + h*h);
 m *= 1.79284291400159 - 0.85373472095314 * (a0*a0+h*h);

 // Compute final noise value at P
 vec3 g = vec3(0.0);
 g.x = a0.x * x0.x + h.x * x0.y;
 g.yz = a0.yz * vec2(x1.x,x2.x) + h.yz * vec2(x1.y,x2.y);
 return 130.0 * dot(m, g);
}

Rotations

2D

mat2 rotation2d(float a) {
 float c=cos(a);
 float s=sin(a);
 return mat2(c,-s,s,c);
}

vec2 rotate(vec2 v, float angle) {

http://lesporteslogiques.net/wiki/ 5 / 5

 return rotation2d(angle) * v;
}

3D

mat4 rotation3d(vec3 axis, float angle) {
 axis = normalize(axis);
 float s = sin(angle);
 float c = cos(angle);
 float oc = 1.0 - c;

 return mat4(
 oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0,
 oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0,
 oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0,
 0.0, 0.0, 0.0, 1.0
);
}

vec3 rotate(vec3 v, vec3 axis, float angle) {
 return (rotation3d(axis, angle) * vec4(v, 1.0)).xyz;
}

Flou Gaussien

Code optimisé, d'après https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
A exécuter en deux passes : horizontale et verticale

vec4 blur(sampler2D image, vec2 uv, vec2 resolution, vec2 direction) {
 const float offset[3] = float[](0.0, 1.3846153846, 3.2307692308);
 const float weight[3] = float[](0.2270270270, 0.3162162162, 0.0702702703);

 vec4 colorOut = texture2D(image, uv / resolution) * weight[0];
 for (int i=1; i<3; i++) {
 vec3 color = texture2D(image, (uv + direction * offset[i]) / resolution);
 color += texture2D(image, (uv - direction * offset[i]) / resolution);
 colorOut += color * weight[i];
 }
 return colorOut;
}

Librairies Processing
Quelques librairies externes pour l'utilisation de shaders dans Processing :

https://github.com/diwi/PixelFlow

Ressources
Liste de liens incontournables pour approfondir et aller plus loin…

https://thebookofshaders.com/
https://www.shadertoy.com
https://iquilezles.org/articles/functions/

Article extrait de : http://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662541406
Article mis à jour: 2022/09/07 11:03

https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
https://github.com/diwi/PixelFlow
https://thebookofshaders.com/
https://www.shadertoy.com
https://iquilezles.org/articles/functions/
http://lesporteslogiques.net/wiki/
http://lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662541406

	Initiation aux Shaders avec Processing
	Le hello World des shaders
	Communication entre l'application et les shaders
	Fonctions Processing pour transmettre des données

	Textures
	Utilisation d'un buffer hors-écran
	Fonctions utiles
	Couleur
	Luminance
	Brightness
	HSB -> RGB
	RGB -> HSB

	Random
	Noise
	Gradient noise
	Fractional Brownian Motion
	Simplex noise

	Rotations
	2D
	3D

	Flou Gaussien

	Librairies Processing
	Ressources

