WIKI Les Portes Logiques
Adresse de l'article : http://lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662546848
Article mis a jour le : 2022/09/07 12:34 / Imprimé le 2026/01/29 13:23

Initiation aux Shaders avec Processing

Le hello World des shaders

Les fichiers vert.glsl et frag.glsl sont a placer dans le dossier data du sketch.

shader_01

vert.gls|
uniform mat4 transformMatrix

attribute vec4 position
attribute vec4 color

varying vec4 vertColor

void main
gl_Position = transformMatrix * position

vertColor = color

frag.glsl

#ifdef GL ES
precision mediump float
precision mediump int
#endif

varying vec4 vertColor

void main
gl_FragColor vertColor

shader_01.pde

PShader myShader
int margin

void setup
size , , P2D

myShader = loadShader("frag.glsl", "vert.glsl"
noStroke

void draw
background
shader (myShader
fill , ,
rect(margin, margin, width margin, height margin
resetShader // Désactive le shader, permet de redessiner normalement

Communication entre l'application et les shaders

http://lesporteslogiques.net/wiki/

http://lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=0
http://lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=1
http://lesporteslogiques.net/wiki/_export/code/ressource/code/processing/shaders?codeblock=2
http://lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662546848

L'application (programme Processing) peut envoyer des données vers les shaders par des variable déclarées avec le mot-clé
uniform.

Fonctions Processing pour transmettre des données
set(String name, int x)

set(String name, int x, int y) -> vec2

set(String name, int x, int y, int z) -> vec3

set(String name, int x, int y, int z, int w) -> vec4

set(String name, float x, ...)

set(String name, PVector vec) -> vec3

set(String name, int[] vec, int ncoords) // Jusqu'a 4 coordonnées par élément
set(String name, float[] vec, int ncoords)

set(String name, PMatrix2D mat) -> mat2
set(String name, PMatrix3D mat) -> mat4

set(String name, PImage tex) -> sampler2D

Attention ! Lorsqu'on transmet des nombres entiers, comme par exemple : set(“u_resolution”, 512, 512), soyez
sUr d'avoir déclaré les variables uniform pour des types entiers, comme : ivec2, ivec3...

Une autre solution est de les convertir en nombres flottants avant de les transmettre : set(“u_resolution”,
float(512), float(512))

Textures

Pour sampler un texel en GLSL (extraire la couleur d'une texture a un point donné), on utilise la fonction:
texture2D(sampler2D image, vec2 uv)

Les coordonnes UV doivent étre comprises entre 0.0 et 1.0

Elles pour origine le coin bas-gauche (0, 0) contrairement aux coordonnées d'écran, qui ont pour origine le coin haut-gauche.

Utilisation d'un buffer hors-écran

Pratique pour créer des effets avec retour d'information (feedback), comme par exemple un effet de réaction-diffusion.

PGraphics buffer = createGraphics(x, y, P2D

buffer.beginDraw

buffer.shader (myShader

buffer.rect(0, 0, buffer.width, buffer.height
buffer.endDraw

image(buffer, 0,

Fonctions utiles

Couleur

Luminance

float luma(vecd4 color

http://lesporteslogiques.net/wiki/ 2/6

return dot(color.rgb, vec3(0.299, 0.587, 0.114

Brightness

float brightness(vec4 color
return dot(color.rgb , vec3(0.2126 0.7152 0.0722

HSB -> RGB

vec3 hsb2rgb(in vec3 c
vec3 rgb clamp(abs(mod(c.x*6.0+vec3(0.0,4.0,2.0
6.0)-3.0)-1.0
0.0
1.0
rgb rgb*rgb*(3.0-2.0%rgb
return c.z mix(vec3(1.0 rgb, c.y

RGB -> HSB

vec3 rgb2hsb(in vec3 ¢
vecd K vec4 (0.0 1.0 3.0, 2.0 3.0 1.0

vec4 p = mix(vecd(c.bg, K.wz
vecd(c.gb, K.xy
step(c.b, c.g

vec4 q mix(vecd(p.xyw, c.r
vecd(c.r, p.yzx
step(p.x, c.r

float d = q.x - min(q.w, q.y

float e = 1.0e-10

return vec3(abs(q.z q.w - g.y 6.0 *d e
d q.x + e
q.X
Random

float random2d(vec2 coord

return fract(sin(dot(coord.xy, vec2(12.9898, 78.233

Noise

Gradient noise

// 2D Noise based on Morgan McGuire @morgan3d
// https://www.shadertoy.com/view/4dS3Wd
float noise (in vec2 coord

vec2 1 = floor(coord

vec2 f fract(coord

// Four corners in 2D of a tile
float a random(i

float b random(i + vec2(1.0, 0.0
float ¢ random(i + vec2(0.0, 1.0
float d random(i + vec2(1.0, 1.0
// Smooth Interpolation

// Cubic Hermite Curve. Same as SmoothStep()
vec2 u frfr(3.0-2.0f
// u = smoothstep(0.,1.,f);

// Mix 4 coorners percentages
return mix(a, b, u.x

[« a u.y 1.0 u.Xx
d b u.x

Fractional Brownian Motion

float hash(vec2 coord

43758.5453123

http://lesporteslogiques.net/wiki/

{

return fract(sin(dot(coord.xy, vec2(12.9898, 78.233))) * 43758.5453123);
}
float noise(vec2 U)
{
vec2 id = floor(U);
U = fract(U);
Uu*s=u=* (3. -2 *U);
vec2 A = vec2(hash(id), hash(id + vec2(0,1))),
B = vec2(hash(id + vec2(1,0)), hash(id + vec2(1,1))),
C = mix(A, B, U.x);
return mix(C.x, C.y, U.y);
}
Vaks
fBM stands for Fractional Brownian Motion
https://iquilezles.org/articles/fbm/
Set octave to 8 for a detailed noise
A value of 1.0 for H is good
*/
float fbm(vec2 x, float H, int octave)
{
float G = exp2(-H);
float f = 1.0;
float a = 1.0;
float t = 0.0;
for(int i=0; i<octave; i++)
{
t += a'noise(f*x);
f *= 2.0;
a = G;
}
return t;
}

Simplex noise

//

// Description : GLSL 2D simplex noise function
// Author : Ian McEwan, Ashima Arts

// Maintainer : ijm

// Lastmod : 20110822 (ijm)

// License :

// Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise

// Some useful functions

vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec2 mod289(vec2 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec3 permute(vec3 x) { return mod289(((x*34.0)+1.0)*x); }

float snoise(vec2 v) {

// Precompute values for skewed triangular grid
const vecd C = vecd(0.211324865405187,
// (3.0-sqrt(3.0))/6.0
0.366025403784439,
// 0.5%(sqrt(3.0)-1.0)
-0.577350269189626,
// -1.0 + 2.0 * C.x
0.024390243902439) ;
// 1.0 / 41.0

// First corner (x0)
vec2 i = floor(v + dot(v, C.yy));
vec2 x0 = v - i + dot(i, C.xx);

// Other two corners (x1, x2)

vec2 il = vec2(0.0);

il = (x0.x > x0.y)? vec2(1.0, 0.0):vec2(0.0, 1.0);
vec2 x1 = x0.xy + C.xx - il;

vec2 x2 = x0.xy + C.zz;

// Do some permutations to avoid
// truncation effects in permutation
i = mod289(1i);
vec3 p = permute(
permute(i.y + vec3(0.0, il.y, 1.0))
+ 1i.x + vec3(0.0, il.x, 1.0));

vec3 m = max(0.5 - vec3(
dot(x0,x0)
dot(x1,x1),
dot(x2,x2)
), 0.0);

http://lesporteslogiques.net/wiki/

m m'm
m m'm

// Gradients:
// 41 pts uniformly over a line, mapped onto a diamond
// The ring size 17*17 = 289 is close to a multiple

// of 41 (41*7 = 287)
vec3 x = 2.0 * fract(p * C.www 1.0
vec3 h = abs(x 0

.5
vec3 ox floor(x + 0.5
vec3 ad = x - ox

// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt(a@*a@ + h*h);
m 1.79284291400159 - 0.85373472095314 a0*ab+h*h

// Compute final noise value at P

vec3 g vec3(0.0

g.x a0.x x0.x h.x x0.y

g.yz ad.yz vec2(x1l.x,x2.x h.yz vec2(xl.y,x2.y
130.0 dot(m, g

Rotations

2D

mat2 rotation2d(float a
float c=cos(a
float s=sin(a

mat2(c,-s,s,c

vec2 rotate(vec2 v, float angle
rotation2d(angle v

3D

mat4 rotation3d(vec3 axis, float angle
axis normalize(axis
float s sin(angle
float ¢ = cos(angle
float oc 1.0 - ¢

mat4
oc axis.x * axis.x [« oc * axis.x * axis.y - axis.z s oc * axis.z axis.x + axis.y s 0.0
oc axis.x * axis.y + axis.z s oc * axis.y * axis.y c oc * axis.y * axis.z axis.x s 0.0
oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c 0.0
0.0 0.0 0.0 1.0

vec3 rotate(vec3 v, vec3 axis, float angle
rotation3d(axis, angle vecd(v, 1.0)).xyz

Flou Gaussien

Code optimisé, d'apres https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
A exécuter en deux passes : horizontale et verticale

vec4 blur(sampler2D image, vec2 uv, vec2 resolution, vec2 direction
const float offset[3 float[](0.0, 1.3846153846, 3.2307692308
const float weight[3 float[](0.2270270270, 0.3162162162, 0.0702702703

vec4 colorQut texture2D(image, uv resolution weight [0
int i=1; i<3; i
vec3 color = texture2D(image uv + direction offset[i resolution
color texture2D(image uv - direction offset[i resolution
colorOut color * weight[i
colorOut

Librairies Processing

Quelques librairies externes pour I'utilisation de shaders dans Processing :

http://lesporteslogiques.net/wiki/

https://www.rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/

e https://github.com/diwi/PixelFlow

Ressources

Liste de liens incontournables pour approfondir et aller plus loin...

e https://thebookofshaders.com/
e https://www.shadertoy.com
e https://iquilezles.org/articles/functions/

Article extrait de : http://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662546848
Article mis a jour: 2022/09/07 12:34

http://lesporteslogiques.net/wiki/

6/6

https://github.com/diwi/PixelFlow
https://thebookofshaders.com/
https://www.shadertoy.com
https://iquilezles.org/articles/functions/
http://lesporteslogiques.net/wiki/
http://lesporteslogiques.net/wiki/ressource/code/processing/shaders?rev=1662546848

	Initiation aux Shaders avec Processing
	Le hello World des shaders
	Communication entre l'application et les shaders
	Fonctions Processing pour transmettre des données

	Textures
	Utilisation d'un buffer hors-écran
	Fonctions utiles
	Couleur
	Luminance
	Brightness
	HSB -> RGB
	RGB -> HSB

	Random
	Noise
	Gradient noise
	Fractional Brownian Motion
	Simplex noise

	Rotations
	2D
	3D

	Flou Gaussien

	Librairies Processing
	Ressources

