
WIKI Les Portes Logiques
Adresse de l'article : http://lesporteslogiques.net/wiki/ressource/logiciel/fabrique_de_gif/cube_en_rotation_facon_tricot
Article mis à jour le : 2020/05/11 14:30 / Imprimé le 2026/02/07 00:32

http://lesporteslogiques.net/wiki/ 1 / 4

processing, animation, em

Cube en rotation façon tricot
Allez je vais décrire le procédé emberlificoté, alambiqué et nébuleux qui m'a conduit à fabriquer ce gif

L'idée est de représenter une forme en 3D simple, comme les premières images de synthèse produites dans les années
1960, en animant des mailles tricotées, un truc plutôt kitsch en somme.

Comme contrainte imposée, le fichier gif doit faire moins de 1 Mo

Pour réaliser l'animation plusieurs étapes ont été nécessaires :

fabriquer des images d'un cube en rotation avec une épaisseur de trait importante (processing)
réduire ces images (ligne de commande)
à partir des images réduites, fabriquer des images ou chaque pixel est remplacé par une maille (processing)
assembler cette série d'images sous forme d'animation (ligne de commande)

Tout ça est un peu fastidieux alors j'ai écrit un script qui en automatise une partie. Et puis, ça pourrait être réduit pour
n'avoir qu'un seul script processing et une commande pour assembler les images.

Script
Le script :

#!/bin/bash

1re ligne ne fonctionne pas : probablement erreur openGL avec xvfb ...
#xvfb-run /home/emoc/processing-3.5.3/processing-java --sketch="/home/emoc/sketchbook/2020_KI/cube_en_rotation/" --run
mogrify -path /home/emoc/Bureau/OPENATELIER_1920/GIF_futur/cube_small -resize 24x36! /home/emoc/sketchbook/2020_KI/cube_en_rotation/*.png
convert -delay 8 -loop 0 /home/emoc/Bureau/OPENATELIER_1920/GIF_futur/cube_small/cube_*.png cube_small_anim.gif
xvfb-run /home/emoc/processing-3.5.3/processing-java --sketch="/home/emoc/sketchbook/2020_KI/TIPL_stitch_001/" --run
"/home/emoc/Bureau/OPENATELIER_1920/GIF_futur/cube_small" "/home/emoc/Bureau/OPENATELIER_1920/GIF_futur/cube_knit"
convert -delay 8 -loop 0 /home/emoc/Bureau/OPENATELIER_1920/GIF_futur/cube_knit/image_*.png -colors 4 cube_knit_anim.gif

La première étape est en commentaire car apparemment démarrer processing pour faire de la 3D en mode headless cause
une erreur que je n'ai pas cherché à résoudre… Il faut donc créer les images de l'animation en démarrant le script
processing par l'interface graphique.
mogrify et convert sont des commandes d'imagemagick

Animation du cube en rotation

http://lesporteslogiques.net/wiki/tag/processing?do=showtag&tag=processing
http://lesporteslogiques.net/wiki/tag/animation?do=showtag&tag=animation
http://lesporteslogiques.net/wiki/tag/em?do=showtag&tag=em
http://lesporteslogiques.net/wiki/_media/ressource/logiciel/fabrique_de_gif/cube_tricot.gif
https://fr.wikipedia.org/wiki/Kitsch
http://lesporteslogiques.net/wiki/ressource/logiciel/imagemagick/start
http://lesporteslogiques.net/wiki/ressource/logiciel/fabrique_de_gif/cube_en_rotation_facon_tricot

http://lesporteslogiques.net/wiki/ 2 / 4

cube_en_rotation.pde (cliquer pour afficher le code)

cube_en_rotation.pde

/*
 cube en rotation
 processing 3.5.3 @ kirin / Debian Stretch 9.5
 20200510 / pierre@lesporteslogiques.net
 */

float angle = 0;
float steps = 36;
void setup() {
 size(240, 240, P3D);
 frameRate(12);
}

void draw() {
 background(0);
 stroke(0, 255, 0);
 strokeJoin(MITER);
 strokeJoin(SQUARE);
 //fill(0, 0, 0);
 noFill();
 strokeWeight(12);
 push();
 translate(width/2, height/2);
 rotateX(radians(angle));
 rotateY(radians(angle)); //, angle);
 box(width/2, width/2, width/2);
 pop();
 angle += 360 / steps;
 angle %= 360;
 saveFrame("cube_##.png");
 if (angle == 0) noLoop();
}

Traitement pour les mailles
TIPL_stitch_001.pde (cliquer pour afficher le code)

TIPL_stitch_001.pde

/*
 traitement d'images par lot pour transformer une animation en mailles de tricot!
 processing 3.5.3 @ kirin / Debian Stretch 9.5
 20200508 / pierre@lesporteslogiques.net

 permet de traiter un répertoire d'image complet et de créer une série d'images
 chaque pixel de l'image d'origine est représenté par une maille noire ou blanche selon la luminosité du pixel d'origine
 utilisable en ligne de commande :
 xvfb-run /home/emoc/processing-3.5.3/processing-java --sketch="/home/emoc/sketchbook/2020_KI/TIPL_stitch_001/" --run
"/home/emoc/tipl/orig" "/home/emoc/tipl/dest"
*/

boolean GUIMODE = true; // GUI ou ligne de commande ? Changé automatiquement si le script est lancé en ligne de commande

String dossier_orig = "/home/emoc/tipl/orig"; // dossier des images à traiter
String dossier_dest = "/home/emoc/tipl/dest"; // dossier des images transformées
String[] fichiers_a_traiter; // liste des fichiers du répertoire à traiter
int nb_fichiers = 0; // nombre de fichiers à traiter

PImage img_orig; // image à traiter

http://lesporteslogiques.net/wiki/_media/ressource/logiciel/fabrique_de_gif/cube_en_rotation.gif
http://lesporteslogiques.net/wiki/_export/code/ressource/logiciel/fabrique_de_gif/cube_en_rotation_facon_tricot?codeblock=1
http://lesporteslogiques.net/wiki/_export/code/ressource/logiciel/fabrique_de_gif/cube_en_rotation_facon_tricot?codeblock=2

http://lesporteslogiques.net/wiki/ 3 / 4

PGraphics img_dest; // image résultant du traitement

String fichier_orig = ""; // nom du fichier original à traiter
String fichier_dest = ""; // nom du fichier à créer
String chemin_orig = ""; // chemin complet vers le fichier original
String chemin_dest = ""; // chemin complet vers le fichier à créer
String extension = "png"; // extension et format de fichier à créer
String racine = "image"; // racine du nom de fichier à créer

int compteur = 1; // numéro du premier fichier, les autres fichiers seront nommés à partir de là
String numero; // formatage du nombre contenu dans le nom de fichier à créer

// variables spécifiques à ce traitement
float maille_larg = 18; // largeur d'une maille en pixel
float maille_haut = 12; // hauteur d'une maille en pixel
float maille_dip = 6; // pointe de maille

void setup() {
 size(800, 300);
 init(); // traitement des arguments associés à la ligne de commande
}

void draw() {

 println("dossier à traiter : " + dossier_orig);
 println("dossier des fichiers traités : " + dossier_dest);
 fichiers_a_traiter = listFileNames(dossier_orig);
 printArray(fichiers_a_traiter);
 nb_fichiers = fichiers_a_traiter.length;

 for (int i = 0; i < nb_fichiers; i++) {

 chemin_orig = dossier_orig + "/" + fichiers_a_traiter[i];
 numero = nf(compteur+i, 4); // numero du fichier formaté 0001, 0002, etc.
 fichier_dest = racine + "_" + numero + "." + extension;
 chemin_dest = dossier_dest + "/" + fichier_dest;
 println("traitement du fichier " + chemin_orig);
 println("fichier à créer : " + chemin_dest);

 img_orig = loadImage(chemin_orig);

 img_dest = createGraphics(img_orig.width * (int)maille_larg, img_orig.height * (int)maille_haut);
 img_dest.beginDraw();
 img_dest.background(127);
 img_dest.stroke(0);

 img_orig.loadPixels();
 for (int j = 0; j < img_orig.width * img_orig.height; j ++) {
 int x = j%img_orig.width;
 int y = floor(j/img_orig.width);
 color c = img_orig.pixels[j];
 float b = brightness(c);
 //img_dest.fill(b);

 if (b > 127) { // couleur de contraste
 img_dest.fill(255);
 } else { // couleur de fond
 img_dest.fill(0);
 }
 knit (x * maille_larg, y * maille_haut, maille_larg, maille_haut, maille_dip);
 }
 img_orig.updatePixels();
 img_dest.endDraw();
 img_dest.save(chemin_dest);
 }

 if (!GUIMODE) {
 exit();
 }
 noLoop();
}

// Tracer une maille
// Tracé des courbes d'après sweaterify de Mariko Kosaka https://github.com/kosamari/sweaterify
void knit (float x, float y, float sWidth, float sHeight, float dip) {
 img_dest.beginShape();
 img_dest.vertex(x + (sWidth / 2), y + dip);
 img_dest.quadraticVertex(x + sWidth - (sWidth / 3), y - (sHeight / 12), x + sWidth - (sWidth / 10), y - sHeight / 4);
 img_dest.quadraticVertex(x + sWidth - (sWidth / 50), y, x + sWidth - (sWidth / 70), y + (sHeight / 10));
 img_dest.endShape();

 img_dest.beginShape();
 img_dest.vertex(x + sWidth - (sWidth / 70), y + (sHeight / 10));
 img_dest.bezierVertex(x + sWidth, y + (sHeight / 4), x + sWidth, y + (sHeight * 0.50), x + sWidth - (sWidth / 15), y + (sHeight
* 0.66));
 img_dest.bezierVertex(x + sWidth - (sWidth * 0.3), y + sHeight, x + sWidth - (sWidth * 0.3), y + sHeight, x + sWidth - (sWidth
/ 2) + (sWidth / 20), y + sHeight + sHeight / 3);
 img_dest.endShape();

 img_dest.beginShape();
 img_dest.vertex(x + sWidth - (sWidth / 2) + (sWidth / 20), y + sHeight + sHeight / 3);
 img_dest.quadraticVertex(x + sWidth - (sWidth * 0.55), y + (sHeight * 0.7), x + sWidth - (sWidth / 2), y + dip);
 img_dest.vertex(x + sWidth - (sWidth / 2), y + dip);
 img_dest.endShape();

http://www.opengroup.org/onlinepubs/009695399/functions/floor.html
http://www.opengroup.org/onlinepubs/009695399/functions/exit.html

http://lesporteslogiques.net/wiki/ 4 / 4

 img_dest.noStroke();

 img_dest.beginShape();
 img_dest.vertex(x + sWidth - (sWidth / 2), y + dip);
 img_dest.vertex(x + sWidth - (sWidth / 70), y + (sHeight / 10));
 img_dest.vertex(x + sWidth - (sWidth / 2) + (sWidth / 20), y + sHeight + sHeight / 3);
 img_dest.endShape();

 img_dest.beginShape();
 img_dest.vertex(x + (sWidth / 2) - sWidth * 0.03, y + dip);
 img_dest.quadraticVertex(x + (sWidth * 0.4), y + (sHeight / 12), x + (sWidth / 10), y - sHeight / 4);
 img_dest.quadraticVertex(x + (sWidth / 50), y, x + (sWidth / 70), y + (sHeight / 10));
 img_dest.endShape();

 img_dest.beginShape();
 img_dest.vertex(x + (sWidth / 70), y + (sHeight / 10));
 img_dest.bezierVertex(x, y + (sHeight / 4), x, y + (sHeight * 0.50), x + (sWidth / 15), y + (sHeight * 0.66));
 img_dest.bezierVertex(x + (sWidth * 0.3), y + sHeight, x + (sWidth * 0.3), y + sHeight, x + (sWidth / 2) - (sWidth / 40), y +
sHeight + sHeight / 3);
 img_dest.quadraticVertex(x + (sWidth * 0.56), y + (sHeight + sHeight / 4), x + (sWidth / 2) - sWidth * 0.05, y + dip);
 img_dest.vertex(x + (sWidth / 2) - sWidth * 0.03, y + dip);
 img_dest.endShape();

}

// ***

// Fonction pour traiter les arguments de la ligne de commande
void init() {
 if (args != null) {
 GUIMODE = false;
 println("Arguments : " + args.length);
 for (int i = 0; i < args.length; i++) {
 println(args[i]);
 }
 if (args.length == 2) {
 dossier_orig = args[0];
 dossier_dest = args[1];
 } else {
 println("arguments insuffisants (indiquer dossier de départ et dossier d'arrivée)");
 exit();
 }
 } else {
 println("pas d'arguments transmis par la ligne de commande");
 }
}

// fonction pour lister les fichiers d'un dossier, renvoie un tableau de chaines de caractères
// d'après Daniel Shiffman : https://processing.org/examples/directorylist.html
String[] listFileNames(String dir) {
 File file = new File(dir);
 if (file.isDirectory()) { // C'est un dossier
 String names[] = file.list();
 names = sort(names);
 return names;
 } else { // If it's not a directory
 return null;
 }
}

Article extrait de : http://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : http://lesporteslogiques.net/wiki/ressource/logiciel/fabrique_de_gif/cube_en_rotation_facon_tricot
Article mis à jour: 2020/05/11 14:30

http://www.opengroup.org/onlinepubs/009695399/functions/exit.html
http://lesporteslogiques.net/wiki/
http://lesporteslogiques.net/wiki/ressource/logiciel/fabrique_de_gif/cube_en_rotation_facon_tricot

	Cube en rotation façon tricot
	Script
	Animation du cube en rotation
	Traitement pour les mailles

