WIKI Les Portes Logiques
Adresse de l'article : https://lesporteslogiques.net/wiki/atelier/processing/start
Article mis a jour le : 2023/03/02 23:39 / Imprimé le 2026/01/28 14:47

processing

Ateliers Processing de I'OA
Sketch 01

L'idée de ce premier atelier était d'implémenter un algorithme d'art contemporain proposé par Sol LeWitt.

L'idée a été trouvée sur le site de Pol Guezennec

Bon, c'est vrai qu'on commence sur des chapeaux de roues, avec |'utilisation des boucles “for™ et des listes, mais j'essaierai

de garder un niveau de complexité constant, afin de ne pas pénaliser ceux-elles qui raccrocheraient le wagon en cours

d'année. Si ce premier sketch vous semble compliqué (et il I'est lorsqu'on débute), les suivants devraient vous paraitre de

plus en plus simples, a force de répétition.

FloatList liste_x FloatList
FloatList liste_ y FloatList
void setup

// Dans la fonction setup on mets les instructions qui n'ont
// besoin d'étre exécutés qu'une seule fois, au démarrage

size ,
background

int i i i=1
liste_x.append(random(width
liste_y.append(random(height

void draw
// La fonction draw s'exécute a chaque rafraichissement de l'écran (60 fois/secondes par défaut)

stroke(random , random , random // Couleur des contours
strokeWeight // Epaisseur des countours
int i0 int(random

int il int(random

line(liste x.get(i0), liste_y.get(i®), liste_x.get(il), liste y.get(il

Sketch 02

Ici nous abordons les boucles “for” pour répéter un bloc d'instructions. Nous imbriquons deux boucles “for” pour créer la

grille sur deux dimensions.

https://lesporteslogiques.net/wiki/

1/11


https://lesporteslogiques.net/wiki/tag/processing?do=showtag&tag=processing
https://fr.wikipedia.org/wiki/Sol_LeWitt
https://polguezennec.fr/archive/2017/SolLeWitt/sol300.html
https://lesporteslogiques.net/wiki/atelier/processing/start

int diametre = 40; // Diamétre des cercles

void setup() {
size (500, 500);
noStroke(); // Désactive le countour des formes
fill(#FFEQ990); // Couleur de remplissage des cercles
}

void draw() {
background (#90A5FF); // On repeint le fond

for (int j = 0; j < height; j += diametre) {

// A chaque tour de la boucle externe on descend d'une ligne

for (int i = 0; i < width; i += diametre) {
// A chaque tour de la boucle interne on décalle d'une colonne
int posx = i + diametre/2;
int posy = j + diametre/2;
// On calcule la distance entre le centre de chaque cercle et le curseur de la souris
float d = dist(posx, posy, mouseX, mouseY);
circle(posx, posy, d * 0.18);

sketch_02.mp4

Sketch 03

Pour sortir de la monotonie des lignes droites, essayons-nous aux courbes !

Premiere forme

Ce sketch est interactif. Cliquez dans la fenétre pour rajouter des points d'ancrages a la courbe.

ArraylList<PVector> points = new ArraylList();

void setup() {
size (500, 500);
noFill();

}

void draw() {
background(255) ;
beginShape();

curveVertex(0, 0); // On rajoute un premier point de contréle aux mémes coordonnées que le premier point d'ancrage de la courbe

curveVertex(0, 0);

for (PVector p : points
p.x = p.x + random(-1
p.y = p.y + random(-1,
curveVertex(p.x, p.y);

i

curveVertex(width, height);

curveVertex(width, height); // Un dernier point de contréle pour terminer la courbe
endShape( ) ;

for (PVector p : points) {
circle(p.x, p.y, 10);
}
}

void mousePressed() {

points.add(new PVector(mouseX, mouseY)); // Chaque clique ajoute un nouveau points aux coordonnées du curseur de la souris

) {
,1)*2; // On modifie légerement les coordonnées de chaque points pour 1'effet de vibration
1)*2

https://lesporteslogiques.net/wiki/

2/11


https://lesporteslogiques.net/wiki/_media/atelier/processing/sketch_02.mp4?cache=
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arraylist

Seconde forme

Dans le style de I'harmonographe.

ArrayList<PVector> list ArraylList

void setup

size (500, 500
background (255
strokeWeight (0.2

void draw
float x 200 cos(millis 0.005
float y 200 sin(millis 0.003
fill(o, o
//background(255) ;
beginShape
curveVertex (width*0.5, 50
curveVertex (width* 0.5, 50
curveVertex(width*0.5 + x, height*0.5
curveVertex(width*0.5, height-50
curveVertex(width*0.5, height-50
endShape

void mouseClicked

list.add

PVector(mouseX, mouseY

y

Sketch 04 : Spirale Polaire

Je ne m'attendais pas a voir venir beaucoup de monde le 4 Janvier, pour le premier atelier Processing de cette nouvelle
année. Puisqu'a I'heure prévue il n'y avait qu'Alex et moi, j'ai voulu proposer quelque chose d'un peu plus complexe que
d'habitude. L'idée était de créer des spirales denses, a la fagon des sillons de disques vinyle.

La méthode la plus “simple” (a condition de connaitre un peu de trigonométrie) est de faire usage des coordonnées polaires.
Tout a fait approprié dans les conditions arctiques que nous avons actuellement a la Baleine. Ne vous laissez pas intimider
par ces mathématiques froides et souvenez-vous que |'essentiel est de dessiner des jolis trucs a I'écran.

Le mini cours de trigo sur les coordonnées polaires

y-axis

p sin(0)

X,y

P

st
]

X-axis

'o
Q
o
@
—
-

https://lesporteslogiques.net/wiki/

3/11


http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arraylist

Pour décrire la position d'un point dans un espace en deux dimensions, on a I'habite d'utiliser les coordonnées
cartésiennes (x,y) ou x représente la distance depuis l'origine sur I'axe horizontal et y la distance sur I'axe vertical. Sur
la figure précédente, I'origine est en bas a gauche du repere. Dans Processing I'origine du repére cartésien se trouve en haut
a gauche. Normalement la je ne vous apprend rien.

Une autre facon pour décrire la position d'un point est par les coordonnées polaires (¢,0), ou ¢ est la distance euclidienne
a vol d'oiseau entre I'origine et notre point, et 8 est I'angle entre la droite origine-point et I'axe horizontal.

Si on imagine un cercle centré sur I'origine du repere et traversant le point p, alors la distance ¢ est égal au rayon de ce
cercle. D'ailleurs les lettres grecs sont un peu pénibles a taper au clavier alors on utilisera plutét les lettres (r,a) pour nos
coordonnées polaires.

On peut aussi imaginer le cadran d'un horloge avec les chiffres des heures situés sur le périmétre du cercle. Dans ce cas
toutes les heures on la méme coordonnée r (elles sont toutes a la méme distance du centre, correspondante au rayon du
cadran) mais elles ont toutes une coordonnée a (angle) différente. L'angle 0 (zéro) se situerait a 3 heures. “12h” aurait
I'angle +90° et “9h” aurait I'angle -90°. Si on fait un tour complet (360°) on revient sur le méme point, donc les coordonnées
(r, 10°) et (r, 370°) décrivent exactement la méme position.

Bon alors il y a une subtilité : en trigonométrie on ne compte pas les angles en degrés comme tout le monde, mais en
radians, qui permettent de donner un angle en fraction de PI. Un tour de cercle complet (360°) fait 2xPI radians. Vous
I'aurez deviné, un demi tour de cercle (180°) fait donc Pl radians. Sur notre cadran d'horloge, “12h” est a l'angle PI/2 radians
et “9h” est a I'angle -PI/2 radians (ou bien (3/4)xPI, si on tourne toujours dans le méme sens). C'est le fameux cercle
trigonométrique, ou I'angle croit dans le sens anti-horaire.

2nfa=/2
3n/4 4 /4
i e n/6
51/6 =0 Pour les n/4,
on trace les
diagonales
Afd=ny, 4 I
ST T I [l
2n
/6 | 11n/6
Sn/4 T
. 3n/2

methodemaths.fr

J'espére que vous n'avez pas la téte qui tourne trop, car il y encore une autre subtilité. Vous vous souvenez peut-étre que
dans Processing (et beaucoup d'autres environnement de programmation), I'axe y est inversé (y grandit de haut en bas) ? Et
bien c'est la méme chose pour le sens de rotation. Sous processing, I'angle grandit dans le sens horaire, contrairement aux
conventions mathématiques !

Enfin, connaissant les coordonnées polaires un point, on peut calculer ses coordonnées cartésiennes (essentiel pour se situer
sur une grille de pixels, comme celle de notre fenétre graphique) en appliquant les formules suivantes :

X = r x cos(a)ety = r x sin(a), ou x et y sont nos coordonnées cartésiennes et r et a sont nos coordonnées
polaires (avec a en radian bien entendu). Les fonctions cos () et sin() se trouvent comme telles dans Processing, et on a
méme les fonctions radians () pour convertir les angles en degrés vers radians, et degrees () pour convertir les angles
en radians vers degrés.

Ouf ! On va enfin pouvoir programmer !

Premiere forme

https://lesporteslogiques.net/wiki/ 4/11



void setup() {
size (500, 500);

1
}

void draw() {
background(255);

translate(width/2, height/2); // Pour déplacer l'origine au milieu de la fenétre

// On initialise les variables dont on aura besoin

PVector pl = new PVector(); // Un premier point

PVector p2 = new PVector(); // Un deuxiéme point

float angle = 0.0; // U'angle actuel (en radians)
float radius = 0.0; // le rayon actuel

while (radius < width*0.5) {

pl.set(radius * cos(angle), radius * sin(angle)); // On définit un premier point aux coordonnées actuelles
angle += 0.2f; // 0n augmente légérement 1'angle (en radians)

radius += 0.3f; // et le rayon

p2.set(radius * cos(angle), radius * sin(angle)); // On définit le deuxiéme point aux nouvelles coordonnées
line(pl.x, pl.y, p2.x, p2.y); // 0On trace une ligne entre nos deux points

// Et on recommence ! (tant que le rayon est inférieur a un certain seuil)

void keyPressed() {
// Pratique pour exporter des captures d'écran
// (elles seront placés dans le sous-dossier "data" du sketch)
// On peut ouvrir le dossier du sketch avec le raccourci Ctrl+K
if (key == 'p") {
saveFrame ("####.png" ) ;
}
}

Seconde forme (en 3D)

Je suis resté longtemps a progra-dessiner en 2D avant d'oser franchir le pas de la 3D avec Processing. Et pourtant il suffit de
pas grand chose pour rajouter une toute nouvelle dimension a vos créations. Avec la librairie PeasyCam vous pourrez
naviguer tres facilement a I'aide de la souris pour admirer vos ceuvres sous tous les angles, méme les dessins plats.

Pour installer la librairie PeasyCam, assurez-vous d'étre relié a Internet puis cliquez sur le menu “Sketch” > “Importer une
librairie...” > “Manage librairies” (chez moi c'est en anglais). Ecrivez “peasycam” dans le champ de recherche et enfin
cliquez sur le bouton “Install”.

https://lesporteslogiques.net/wiki/ 5/11



peasy.* // 0On importe la librairie peasyCam

PeasyCam cam // Cette variable va contenir les infos de notre caméra

void setup
size(800, 800, P3D // 0On choisit le moteur de rendu "P3D" pour la 3D
cam PeasyCam , 400 // On crée la caméra

void draw

background (255

PVector pl PVector
PVector p2 PVector
float angle = 0.0

float radius 0.0

radius < width*0.5
pl.set(radius cos(angle), radius sin(angle
angle 0.1f
radius 0.02f
p2.set(radius * cos(angle), radius * sin(angle

float seg_angle sin(2 atan2(p2.y-pl.y, p2.x-pl.x

stroke(seg_angle*200
line(pl.x, pl.y, p2.x, p2.y

Forme ultime

Voila ce que ¢a peut donner, avec une bonne dose d'ebstination de persévérance et de caféine trigonométrie.

Le texte pour I'étiquette a été fait avec Inkscape (le fichier, nommé “label.png”, doit étre placé dans le répertoire du

sketch).

// Un peu de magie trigonométrique

// Qui colore les segments en fonction de l'angle que forment les deux points

peasy.*
PeasyCam cam

float LABEL_RADIUS 130.0f
float RECORD_RADIUS 400f
PVector pl PVector
PVector p2 PVector
float rec_rot = 0.0f

float rot_speed = 0.02f
PImage label

void setup
size(500, 500, P3D

https://lesporteslogiques.net/wiki/

6/11



//fullScreen(P3D);

hint (DISABLE DEPTH_TEST // Pour éviter les problémes de superposition lorsqu'on dessine plusieurs objets sur le méme plan en 3D
cam PeasyCam , 400

label loadImage("label.png"

void draw
background (255

// Dessiner les sillons du vinyle
fill(o
noStroke
circle(0, 0, 2 RECORD_RADIUS
strokeWeight (1.4
float angle = rec_rot
float radius = LABEL_RADIUS
radius LABEL_RADIUS 34
pl.set(radius * cos(angle), radius * sin(angle
angle 0.05f
radius 0.14f
p2.set(radius cos(angle), radius sin(angle
float seg_angle 1.02 sin(2 atan2(p2.y-pl.y, p2.x-pl.x

seg_angle seg_angle seg_angle
seg_angle 0.5 * sin(2 * atan2(p2.y-pl.y, p2.x-pl.x PI
seg_angle random(0.2f

seg_angle 230
stroke(seg_angle 0.8, seg_angle*0.8, seg_angle
line(pl.x, pl.y, p2.x, p2.y

radius RECORD_RADIUS 14
pl.set(radius * cos(angle), radius * sin(angle
angle 0.03f
radius 0.005f
p2.set(radius cos(angle), radius sin(angle
float seg_angle 1.02 sin(2 atan2(p2.y-pl.y, p2.x-pl.x
seg_angle seg_angle * seg angle
seg_angle seg_angle * seg angle
seg_angle 0.5 sin(2 atan2(p2.y-pl.y, p2.x-pl.x PI
seg_angle random(0.1f
seg_angle 230
stroke(seg_angle * 0.8, seg_angle*0.8, seg_angle
line(pl.x, pl.y, p2.x, p2.y

// L'étiquette centrale

noStroke

fill(255, 255, 0

circle(0, ©, LABEL_RADIUS 2

rotate(rec_rot

image(label, -label.width*0.5, -label.height*0.5
// Le trou central

fill(255

circle(0, 0, 20

rec_rot rot_speed
rec_rot > TWO_PI
rec_rot TWO_PI

Sketch 05 : Etoile des neiges...

Encore un truc de saison, saupoudré de kitshitude, avec cette ode a I'hiver : nous allons faire tomber de flocons. Une fagon
d'aborder les particules et de s'émerveiller devant son écran.

On commence par trouver une belle image de flocon sur internet (je ne sais plus d'ou je I'ai sorties donc excusez I'absence
de source et de licence...)

https://lesporteslogiques.net/wiki/ 7/11



La seconde image a été dérivée de la premiére en y appliquant un flou gaussien dans le logiciel Gimp.

PImage fl_flou;
PImage fl_moyen;
PImage fl_petit;

ArrayList<PVector> flocons_pos = new ArrayList();
ArraylList<PImage> flocons_img = new ArraylList();
void setup() {

size(800, 600);

fl_flou = loadImage("snowflake flou.png");
fl_moyen = loadImage("snowflake 400.png");

// Liste qui contiendra la position de chaque flocon

// Liste qui contiendra l'image de chaque flocon

fl_moyen.resize (100, 0); // 0On redimensionne 1'image a 100 pixels de largeur,

fl _petit = fl_moyen.copy();

fl_petit.resize(50, 0); // le second argument 'O' permet de garder la méme proportion pour la hauteur

for (int i=0; i<30; i++) { // On crée 30 petits flocons

flocons_img.add(fl_petit);

flocons_pos.add(new PVector(random(width), random(height)));

}

for (int i=0; i<10; i++) { // 10 flocons moyens

flocons_img.add (fl_moyen);

flocons_pos.add(new PVector(random(width), random(height)));

i

for (int i=0; i<4; i++) { // et 4 gros flocons

flocons_img.add(fl_flou);

flocons_pos.add(new PVector(random(width), random(height)));

¥
}

void draw() {
background (255) ;

for (int i=0; i<flocons_img.size(); i++) {
PImage img = flocons_img.get(i)
i

PVector pos = flocons_pos.get(i);

pos.y += img.width * 0.01; // Le floncon tombe a une vitesse proportionelle a sa taille

pos.x += random(-1, 1);
pos.y += random(-1, 1);

pos.z += random(0, 1) * 0.1; // Rotation du flocon

if (pos.y > height + img.height/2) {

pos.y = -img.height/2; // 0n replace le flocon au dessus de la fenétre
pos.x = random(width) - img.width/2; // Avec une position horizontale aléatoire

}

// Les instructions suivantes permettent de faire une rotation et une translation du flocon

push();

https://lesporteslogiques.net/wiki/

8/11


http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arraylist
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arraylist

translate(pos.x, pos.y

rotate(pos.z

image(img, -img.width*0.5, -img.height*0.5
pop

Seconde forme : Vitesse et accélération

Pour le moment I'animation des flocons est saccadée puisque qu'ils sautent d'une position a une autre (a une distance
aléatoire). Ca donne un effet stop-motion assez sympa, mais si on veut avoir des mouvements plus naturels il va falloir

procéder d'une autre facon : en utilisant un variable de vitesse.

PImage fl_flou
PImage fl_moyen
PImage fl_petit

ArrayList<PVector> flocons_pos ArraylList
ArraylList<PImage> flocons_img ArraylList
ArraylList<PVector> flocons_vel ArraylList
void setup

size(500, 500

fl_flou loadImage("snowflake flou.png"
fl_moyen = loadImage("snowflake 400.png"
fl_moyen.resize (100, 0
fl petit = fl moyen.copy
fl_petit.resize(50, 0
int i=0; i1<30; i
flocons_img.add(fl_petit
flocons_pos.add PVector(random(width),

int i=0; i<10; i
flocons_img.add(fl_moyen
flocons_pos.add PVector(random(width),
int i=0; i<4; i
flocons_img.add(fl flou
flocons_pos.add PVector(random(width),

// Donne une vitesse aléatoire (la troisieme

int i=0; i<flocons_img.size i
flocons_vel.add PVector( random(-1, 1 0.01, random(-1, 1 0.01, random(-1, 1
void draw
background (255
int i=0; i<flocons_img.size i
PImage img flocons_img.get (i
PVector pos flocons_pos.get(i
PVector vel = flocons_vel.get(i // 0On récupére la vitesse de ce flocon
// 0n ajoute une accélération aléatoire a la vitesse
vel.x random(-1, 1 0.004
vel.y random(-1, 1 0.002
vel.z random(-1, 1 0.001
pos.y img.width vel.y + 0.04 // La position augmente en fonction de la vitesse
pos.Xx vel.x
pos.z vel.z

pos.y height img.height/2
pos.y img.height/2
pos.x = random(width img.width/2
vel.y = 0

// Les instructions suivantes permettent de faire une rotation et une translation du flocon

push

translate(pos.x, pos.y

rotate(pos.z

image(img, -img.width*0.5, -img.height*0.5
pop

// Liste qui contiendra la vitesse (linéaire et angulaire) de chaque flocon

random(height

random(height

random(height

valeur étant la vitesse de rotation) a chaque flocon

0.

1

https://lesporteslogiques.net/wiki/

9/11


http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arraylist
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arraylist
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arraylist

Sketch 06 : Pluie

On continue de suivre le fil des saisons avec une idée proposée par Martin et inspirée par un sketch, Impluvium de Pol
Guezennec.

La particularité de cet exercice (et sa complexité) tient dans le fait qu'il y a deux états a I'animation : le premier lorsque la
goutte tombe verticalement, le second lorsque 3 ondes croissent jusqu'a atteindre chacun leur taille maximale.

Puisqu'il n'y a que ces deux états on pourra utiliser une variable etat de type boolean (valeur binaire true ou false)
pour définir I'état actuel de notre euh... élément aqueux.

L' etat passera de false (goutte tombante) a true (onde croissante) lorsque la goutte sera tombée d'une hauteur
supérieure a la composante y de la variable pg. pg est un vecteur a deux composantes (x et y) qui définit a la fois le point
de départ (sur I'axe horizontal) et le point d'arrivée (sur I'axe vertical) de notre goutte. Les valeurs de pg seront réinitialisées
au hasard a chaque nouveau cycle pour ajouter un peu de variété a I'animation.

L'illusion n'est pas parfaite car la goutte disparait instantanément aprés impact pour laisser place aux ondes. Si on était
soucieux du réalisme on tronquerait progressivement la partie inférieur de la goutte qui est au-dela du point d'impact mais
bon... L'animation est suffisamment rapide pour qu'on y voit que du feu !

// Variables de 1'état "goutte"
float vitesse goutte 30; // Vitesse verticale (en pixel/frame)
float taille_goutte = 70

float inclinaison 20 // Décallage horizontal (en pixels) entre le haut et le bas de la goutte
PVector pg PVector(random(500), 370 // Contient la coordonnée horizontale de la goutte (x)

// Et la coordonnée verticale du point d'impact final (y)
PVector pl PVector(pg.x, -taille goutte // Point supérieur de la goutte
PVector p2 PVector(pg.x + inclinaison, 0); // Point inférieur de la goutte

// Variables de l'état "onde"

float vitesse onde = 3 // Vitesse de croissance des ondes (en pixel/frame)

float decalage_onde = 40 // Décallage entre chaque onde (en pixels)

float taille 0.0 // Taille de la premiére onde, a chaque instant

float taille2 1 * decalage_onde; // Taille de la deuxieme onde, a chaque instant
float taille3 2 * decalage_onde; // Taille de la troisieme onde, a chaque instant
float taille_max = 150

float ratio 2.5 // Ratio entre la largeur et la hauteur de l'onde

boolean etat = false // Etat goutte si "true, état onde si "false"

https://lesporteslogiques.net/wiki/ 10/11


http://www.polguezennec.fr/archive/12_impluvium/index.html

void setup
size (500, 500
stroke (#9D62FF
strokeWeight (2
noFill

void draw
background (255

etat false
// Goutte d'eau

// La goutte se décalle en fct de son inclinaison

pl.y vitesse goutte // La goutte descend (verticalement)
p2.y vitesse goutte

pl.x vitesse_goutte * inclinaison / taille_goutte

p2.x vitesse _goutte * inclinaison / taille goutte

line(pl.x, pl.y, p2.x, p2.y

p2.y > pg.y
etat true

pPg.x p2.x

// Ondes

taille = taille + vitesse onde
taille2 = taille2 + vitesse onde
taille3 = taille3 + vitesse onde

taille 0 taille < taille_max

ellipse(pg.x, pg.y, ratio * taille, taille

taille2 > 0 taille2 < taille_max

ellipse(pg.x, pg.y, ratio * taille2, taille2

taille3 0

ellipse(pg.x, pg.y, ratio * taille3, taille3

taille3 > taille max
taille = 0.0
taille2 1 * decalage_onde
2

taille3 decalage_onde

etat = false

pg PVector(random(0, 500), random(200, 400
pl PVector(pg.x, -taille goutte

p2 PVector(pg.x + inclinaison, 0

Article extrait de : https://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : https://lesporteslogiques.net/wiki/atelier/processing/start

Article mis a jour: 2023/03/02 23:39

https://lesporteslogiques.net/wiki/

11/11


https://lesporteslogiques.net/wiki/
https://lesporteslogiques.net/wiki/atelier/processing/start

	Ateliers Processing de l'OA
	Sketch 01
	Sketch 02
	Sketch 03
	Première forme
	Seconde forme

	Sketch 04 : Spirale Polaire
	Première forme
	Seconde forme (en 3D)
	Forme ultime

	Sketch 05 : Étoile des neiges...
	Seconde forme : Vitesse et accélération

	Sketch 06 : Pluie


