WIKI Les Portes Logiques
Adresse de l'article : https://lesporteslogiques.net/wiki/atelier/processing/start?rev=1673013702
Article mis a jour le : 2023/01/06 15:01 / Imprimé le 2026/02/18 02:50

processing

Ateliers Processing de I'OA
Sketch 01

L'idée de ce premier atelier était d'implémenter un algorithme d'art contemporain proposé par Sol LeWitt.

L'idée a été trouvée sur le site de Pol Guezennec

Bon, c'est vrai qu'on commence sur des chapeaux de roues, avec |'utilisation des boucles “for™ et des listes, mais j'essaierai

de garder un niveau de complexité constant, afin de ne pas pénaliser ceux-elles qui raccrocheraient le wagon en cours

d'année. Si ce premier sketch vous semble compliqué (et il I'est lorsqu'on débute), les suivants devraient vous paraitre de

plus en plus simples, a force de répétition.

FloatList liste_x FloatList
FloatList liste_ y FloatList
void setup

// Dans la fonction setup on mets les instructions qui n'ont
// besoin d'étre exécutés qu'une seule fois, au démarrage

size ,
background

int i i i=1
liste_x.append(random(width
liste_y.append(random(height

void draw
// La fonction draw s'exécute a chaque rafraichissement de l'écran (60 fois/secondes par défaut)

stroke(random , random , random // Couleur des contours
strokeWeight // Epaisseur des countours
int i0 int(random

int il int(random

line(liste x.get(i0), liste_y.get(i®), liste_x.get(il), liste y.get(il

Sketch 02

Ici nous abordons les boucles “for” pour répéter un bloc d'instructions. Nous imbriquons deux boucles “for” pour créer la

grille sur deux dimensions.

https://lesporteslogiques.net/wiki/

https://lesporteslogiques.net/wiki/tag/processing?do=showtag&tag=processing
https://fr.wikipedia.org/wiki/Sol_LeWitt
https://polguezennec.fr/archive/2017/SolLeWitt/sol300.html
https://lesporteslogiques.net/wiki/atelier/processing/start?rev=1673013702

int diametre = 40; // Diamétre des cercles

void setup() {
size (500, 500);
noStroke(); // Désactive le countour des formes
fill(#FFEQ990); // Couleur de remplissage des cercles
}

void draw() {
background (#90A5FF); // On repeint le fond

for (int j = 0; j < height; j += diametre) {

// A chaque tour de la boucle externe on descend d'une ligne

for (int i = 0; i < width; i += diametre) {
// A chaque tour de la boucle interne on décalle d'une colonne
int posx = i + diametre/2;
int posy = j + diametre/2;
// On calcule la distance entre le centre de chaque cercle et le curseur de la souris
float d = dist(posx, posy, mouseX, mouseY);
circle(posx, posy, d * 0.18);

sketch_02.mp4

Sketch 03

Pour sortir de la monotonie des lignes droites, essayons-nous aux courbes !

Premiere forme

Ce sketch est interactif. Cliquez dans la fenétre pour rajouter des points d'ancrages a la courbe.

ArraylList<PVector> points = new ArraylList();

void setup() {
size (500, 500);
noFill();

}

void draw() {
background(255) ;
beginShape();
curveVertex(0, 0); // On rajoute un premier point de contréle aux mémes coordonnées que le premier point d'ancrage de la courbe
curveVertex(0, 0);

for (PVector p : points) {
p.x = p.x + random(-1,1)*2; // On modifie légérement les coordonnées de chaque points pour l'effet de vibration
p.y = p.y + random(-1,1)%2
curveVertex(p.x, p.y);

i

curveVertex(width, height);

curveVertex(width, height); // Un dernier point de contréle pour terminer la courbe
endShape() ;

for (PVector p : points) {
circle(p.x, p.y, 10);
}
}

void mousePressed() {
points.add(new PVector(mouseX, mouseY)); // Chaque clique ajoute un nouveau points aux coordonnées du curseur de la souris

https://lesporteslogiques.net/wiki/ 2/6

https://lesporteslogiques.net/wiki/_media/atelier/processing/sketch_02.mp4?cache=
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arraylist

Seconde forme

Dans le style de I'harmonographe.

ArrayList<PVector> list ArraylList

void setup

size (500, 500
background (255
strokeWeight (0.2

void draw
float x 200 cos(millis 0.005
float y 200 sin(millis 0.003
fill(o, o
//background(255) ;
beginShape
curveVertex (width*0.5, 50
curveVertex (width* 0.5, 50
curveVertex(width*0.5 + x, height*0.5
curveVertex(width*0.5, height-50
curveVertex(width*0.5, height-50
endShape

void mouseClicked

list.add

PVector(mouseX, mouseY

y

Sketch 04 : Spirale Polaire

Je ne m'attendais pas a voir venir beaucoup de monde le 4 Janvier, pour le premier atelier Processing de cette nouvelle
année. Puisqu'a I'heure prévue il n'y avait qu'Alex et moi, j'ai voulu proposer quelque chose d'un peu plus complexe que
d'habitude. L'idée était de créer des spirales denses, a la fagon des sillons de disques vinyle.

La méthode la plus “simple” (a condition de connaitre un peu de trigonométrie) est de faire usage des coordonnées polaires.
Tout a fait approprié dans les conditions arctiques que nous avons actuellement a la Baleine. Ne vous laissez pas intimider
par ces mathématiques froides et souvenez-vous que |'essentiel est de dessiner des jolis trucs a I'écran.

Le mini cours de trigo sur les coordonnées polaires

y-axis

p sin(0)

X,y

P

st
]

X-axis

'o
Q
o
@
—
-

https://lesporteslogiques.net/wiki/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+arraylist

Pour décrire la position d'un point dans un espace en deux dimensions, on a I'habite d'utiliser les coordonnées
cartésiennes (x,y) ou x représente la distance depuis l'origine sur I'axe horizontal et y la distance sur I'axe vertical. Sur
la figure précédente, I'origine est en bas a gauche du repere. Dans Processing I'origine du repére cartésien se trouve en haut
a gauche. Normalement la je ne vous apprend rien.

Une autre facon pour décrire la position d'un point est par les coordonnées polaires (¢,0), ou ¢ est la distance euclidienne
a vol d'oiseau entre I'origine et notre point, et 8 est I'angle entre la droite origine-point et I'axe horizontal.

Si on imagine un cercle centré sur I'origine du repere et traversant le point p, alors la distance ¢ est égal au rayon de ce
cercle. D'ailleurs les lettres grecs sont un peu pénibles a taper au clavier alors on utilisera plutét les lettres (r,a) pour nos
coordonnées polaires.

On peut aussi imaginer le cadran d'un horloge avec les chiffres des heures situés sur le périmétre du cercle. Dans ce cas
toutes les heures on la méme coordonnée r (elles sont toutes a la méme distance du centre, correspondante au rayon du
cadran) mais elles ont toutes une coordonnée a (angle) différente. L'angle 0 (zéro) se situerait a 3 heures. “12h” aurait
I'angle +90° et “9h” aurait I'angle -90°. Si on fait un tour complet (360°) on revient sur le méme point, donc les coordonnées
(r, 10°) et (r, 370°) décrivent exactement la méme position.

Bon alors il y a une subtilité : en trigonométrie on ne compte pas les angles en degrés comme tout le monde, mais en
radians, qui permettent de donner un angle en fraction de PI. Un tour de cercle complet (360°) fait 2xPI radians. Vous
I'aurez deviné, un demi tour de cercle (180°) fait donc Pl radians. Sur notre cadran d'horloge, “12h” est a l'angle PI/2 radians
et “9h” est a I'angle -PI/2 radians (ou bien (3/4)xPI, si on tourne toujours dans le méme sens). C'est le fameux cercle
trigonométrique, ou I'angle croit dans le sens anti-horaire.

/4 =1/2
3n/4 4 /4
i n/6
5n/6 — Pour les /4,
on trace les
diagonales
Afd=ny, 4 I
ST T I [l
2n
/6 | 11n/6
Sn/4 T
. 3n/2

methodemaths.fr

J'espére que vous n'avez pas la téte qui tourne trop, car il y encore une autre subtilité. Vous vous souvenez peut-étre que
dans Processing (et beaucoup d'autres environnement de programmation), I'axe y est inversé (y grandit de haut en bas) ? Et
bien c'est la méme chose pour le sens de rotation. Sous processing, I'angle grandit dans le sens horaire, contrairement aux
conventions mathématiques !

Enfin, connaissant les coordonnées polaires un point, on peut calculer ses coordonnées cartésiennes (essentiel pour se situer
sur une grille de pixels, comme celle de notre fenétre graphique) en appliquant les formules suivantes :

X = r x cos(a)ety = r x sin(a), ou x et y sont nos coordonnées cartésiennes et r et a sont nos coordonnées
polaires (avec a en radian bien entendu). Les fonctions cos () et sin() se trouvent comme telles dans Processing, et on a
méme les fonctions radians () pour convertir les angles en degrés vers radians, et degrees () pour convertir les angles
en radians vers degrés.

Ouf ! On va enfin pouvoir programmer !

Premiere forme

https://lesporteslogiques.net/wiki/ 4/6

void setup() {
size (500, 500);

1
}

void draw() {
background(255);

translate(width/2, height/2); // Pour déplacer l'origine au milieu de la fenétre

// On initialise les variables dont on aura besoin

PVector pl = new PVector(); // Un premier point

PVector p2 = new PVector(); // Un deuxiéme point

float angle = 0.0; // U'angle actuel (en radians)
float radius = 0.0; // le rayon actuel

while (radius < width*0.5) {

pl.set(radius * cos(angle), radius * sin(angle)); // On définit un premier point aux coordonnées actuelles
angle += 0.2f; // 0n augmente légérement 1'angle (en radians)

radius += 0.3f; // et le rayon

p2.set(radius * cos(angle), radius * sin(angle)); // On définit le deuxiéme point aux nouvelles coordonnées
line(pl.x, pl.y, p2.x, p2.y); // 0On trace une ligne entre nos deux points

// Et on recommence ! (tant que le rayon est inférieur a un certain seuil)

void keyPressed() {
// Pratique pour exporter des captures d'écran
// (elles seront placés dans le sous-dossier "data" du sketch)
// On peut ouvrir le dossier du sketch avec le raccourci Ctrl+K
if (key == 'p") {
saveFrame ("####.png") ;
}
}

Seconde forme (en 3D)

Je suis resté longtemps a progra-dessiner en 2D avant d'oser franchir le pas de la 3D avec Processing. Et pourtant il suffit de
pas grand chose pour rajouter une toute nouvelle dimension a vos créations. Avec la librairie PeasyCam vous pourrez
naviguer tres facilement a I'aide de la souris pour admirer vos ceuvres sous tous les angles, méme les dessins plats.

Pour installer la librairie PeasyCam, assurez-vous d'étre relié a Internet puis cliquez sur le menu “Sketch” > “Importer une
librairie...” > “Manage librairies” (chez moi c'est en anglais). Ecrivez “peasycam” dans le champ de recherche et enfin
cliquez sur le bouton “Install”.

https://lesporteslogiques.net/wiki/ 5/6

import peasy.*; // On importe la librairie peasyCam

PeasyCam cam;

void setup() {
size(800, 800, P3D); // On choisit le moteur de rendu "P3D" pour la 3D

¥

cam = new PeasyCam(this, 400); // On crée la caméra

void draw() {

-

background(255);

PVector pl = new PVector();
PVector p2 = new PVector();
float angle = 0.0;
float radius = 0.0;

while (radius < width*0.5) {
pl.set(radius * cos(angle), radius * sin(angle));
angle += 0.1f;
radius += 0.02f;
p2.set(radius * cos(angle), radius * sin(angle));

float seg_angle = sin(2 * atan2(p2.y-pl.y, p2.x-pl.x));

stroke(seg_angle*200);
line(pl.x, pl.y, p2.x, p2.y);

// Cette variable va contenir les infos de notre caméra

// Un peu de magie trigonométrique
// Qui colore les segments en fonction de l'angle que forment les deux points

Article extrait de : https://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : https://lesporteslogiques.net/wiki/atelier/processing/start?rev=1673013702

Article mis a jour: 2023/01/06 15:01

https://lesporteslogiques.net/wiki/

6/6

https://lesporteslogiques.net/wiki/
https://lesporteslogiques.net/wiki/atelier/processing/start?rev=1673013702

	Ateliers Processing de l'OA
	Sketch 01
	Sketch 02
	Sketch 03
	Première forme
	Seconde forme

	Sketch 04 : Spirale Polaire
	Première forme
	Seconde forme (en 3D)

