WIKI Les Portes Logiques
Adresse de I'article : https://lesporteslogiques.net/wiki/openatelier/projet/telephone_bmr
Article mis a jour le : 2023/07/19 13:45 / Imprimé le 2026/01/19 07:48

arduino, audio, lecteur-son, em

Téléphone BMR

C'est un superbe téléphone sensuel en forme de bouche qui a servi a diffuser une suite d'entretiens sur le sujet des regles. Il
a été utilisé comme borne d'écoute pour la journée/soirée “Bois mes régles” organisée par Gast! a Quimperia / La Baleine en
mars 2018.

Le clavier du téléphone permet de déclencher la lecture d'un enregistrement que I'on peut écouter dans le combiné, comme
un téléphone quoi!

Le circuit du téléphone est remplacé par un arduino nano qui déclenche la lecture d'un fichier mp3 par un circuit DFPlayer, le
haut-parleur utilisé est le haut-parleur original du combiné. Le clavier original du téléphone est aussi réutilisé et I'ensemble
est alimenté par un transfo qui récupere le courant du secteur pour en faire un courant 9V continu.

En conclusion : le circuit fonctionne correctement alimenté par un transfo. secteur, mais des parasites se glissent sur la
sortie sonore. Et ce malgré I'usage d'anneaux de ferrite pour les absorber. Alors peut-étre que ¢a peut étre réalisé d'une
maniére plus efficace ou que le DFPlayer a ses limites, celui que nous avons utilisé vient du grand grenier ebay, peut-étre
qu'on peut obtenir de meilleurs résultats avec un module du fabricant (DFRobot)

Réutiliser le haut parleur du téléphone
Le combiné est relié au poste par une prise RJ11 (seuls quatre fils sont utilisés) :

Vert : micro
Rouge : micro
Jaune : HP
Noir : HP

On se servira des fils jaunes et noirs pour relier le haut-parleur au circuit

Réutiliser le clavier du téléphone

Chaque touche active une liaison entre deux broches.
Méthode pour retrouver la matrice :

e numéroter les broches ou les nommer

e sur du papier, dessiner une grille avec autant de colonnes et de rangées que sur le clavier et dessiner le clavier

e en utilisant un multimetre pour tester la continuité, tester toutes les combinaisons de broches possibles, en appuyant
sur chaque touche, 'une apres l'autre

e noter pour chaque touche les 2 broches utilisées

Connexions du clavier sur nappe : R4, R3, R2, R1, VSS, C1, C2, C3, C4, PT

| |c1jc2|c3| ca |

https://lesporteslogiques.net/wiki/ 1/9

https://lesporteslogiques.net/wiki/tag/arduino?do=showtag&tag=arduino
https://lesporteslogiques.net/wiki/tag/audio?do=showtag&tag=audio
https://lesporteslogiques.net/wiki/tag/lecteur-son?do=showtag&tag=lecteur-son
https://lesporteslogiques.net/wiki/tag/em?do=showtag&tag=em
https://lesporteslogiques.net/wiki/_media/openatelier/projet/telephone_bmr/telephone_bmr_photo.jpg
https://fr.wikipedia.org/wiki/RJ11
https://lesporteslogiques.net/wiki/openatelier/projet/telephone_bmr

Cl|C2/C3| C4
R1|1|2|3
R2{ 4|5 |6 |[FLASH
R3|7(8|9
R4| * | 0 | # |[REDIAL

fritzing

telephone_BMR _test_clavier_002.ino (cliquer pour afficher le code)

telephone_BMR _test_clavier_002.ino

/* deuxieme essai avec une autre library pour l'afficheur 7 segment
* https://github.com/bremme/arduino-tml637
* SevenSegmentTM1637 de Bram Harmsen
*/

/] FREEFREARRA AR s sk ook ok ok ok ok ok ok ok K ok Kok ok ok kK ok Kok ok

// Définitions pour l'afficheur U7 segments a 4 chiffres
#include "SevenSegmentTM1637.h"

const byte PIN CLK = 2 // define CLK pin (any digital pin)
const byte PIN DIO = 3 // define DIO pin (any digital pin)
SevenSegmentTM1637 display (PIN CLK, PIN DIO

sk sk sk sk sk sk ok ok sk ok ok ok ok sk ok sk

sk sk sk sk ook ook ok ok ok koK

// Définitions pour le clavier matrice
#include <Keypad.h>

const byte ROWS = 4; //quatre rangées
const byte COLS = 4; //quatre colonnes
char keys[ROWS][COLS

'1Y,'2','3','2"

‘4','5','6",'F'

'7','8','9','2"

tRUTOY, '# 'R

/* Correspondances entres les broches identifiées sur le téléphone et les pins de l'arduino
R1I : 7 c1: 8
R2 : 6 c2: 9
R3 : 5 c3 : 10
R4 : 4 c4 : 11 */
byte rowPins[ROWS 7 6 5 4}; // connecter les rangées a ces pins
byte colPins[COLS 8 9, 10, 11 // connecter les colonnes a ces pins

Keypad keypad Keypad(makeKeymap (keys rowPins, colPins, ROWS, COLS
void setup
Serial.begin (9600

// Initialiser l'afficheur a 4 chiffres
display.begin // initializes the display

display.setBacklight (100

set the brightness to 100 %

display.print("INIT" // display INIT on the display
delay (1000 // wait 1000 ms
void loop

char key keypad.getKey

https://lesporteslogiques.net/wiki/

https://lesporteslogiques.net/wiki/_media/openatelier/projet/telephone_bmr/nano_matrix_keyboard_4_digit_7_segment_bb.png
https://lesporteslogiques.net/wiki/_export/code/openatelier/projet/telephone_bmr?codeblock=0

if (key){
display.print(key);
Serial.println(key) ;
delay(300);

} else {
display.clear();

}

}

Utiliser un DFPlayer mini

doc : DFPlayer mini manual

Pour utiliser le DFPlayer mini je me suis basé sur la documentation du fabricant du module (DFRobot), mais j'ai pu lire des
commentaires sur cette doc. disant qu'elle est incompléete, et Ype Brada a proposé le code ci-dessous pour utiliser toutes les
fonctions du DFPlayer mini. Je me suis aussi rendu compte qu'il fallait utiliser myDFPlayer.enableDAC() ; pour permettre

la sortie sur le DAC (pour ampli, casque, etc.)

DFPlayer_Command_Discovery.ino (cliquer pour afficher le code)

DFPlayer_Command_Discovery.ino

/*
DF Player mini command discovery

Program is mend to discover all the possibilities of the command
structure of the DFPlayer mini. No special libraries are needed.

In general, there are 3 ways to address a MP3 or WAV file:
(1) Track order:
All songs are stored a certain order on the card. The order is however

not garanteed and very depending on the order how the files were written to the card. This
method is not suitable when it is absolutly neccessary that a specific track is played. Commands
using this written order are (0x01, 0x02, 0x03, 0x08, 0x11, 0x3C, 0x3D, Ox3E, 0x4B, 0x4C, 0x4D).

The name of a song is arbitrary
(2) Folder number and song number:

Folders are named 01~99 and songs 001~255.mp3 or 001~255.WAV. It's possible to exactly address
a specific song with command 0xOF. Command 0x17 is related. When adressing a specific file,
the file is always internaly converted to the stored track number. This number can be requested by

commands 0x4B, 0x4C or 0x4D.

(3) Folder named "mp3" and song number:

-~

A folder is named "mp3" and songs with a name of exact a 4-digit number (0001~2999) e.g. 0235.mp3.
It's possible to exactly address a specific song with command 0x12.The according track number can

be requested by commands 0x4B, 0x4C or 0x4D.

This program is simple and can be the basis for your own mp3 player sketch.

Note: The DF Player commands are not always correct described in the manual. I tried to fix it, but
there is still a something to do. The commands recoverd so far are listed below.

How to use this sketch:

Enter three (separated) DECIMAL numbers in the Serial Monitor with no end of line character

First number : Command

Second number: First (High Byte) parameter

Third number : Second (Low Byte) parameter

E.g.: 3,0,1 will play the first track on the TF card

VERY IMPORTANT: Use serial 1K resistors or a level shifter between module RX and TX

and Arduino to suppress audio noise
Connect Sound module board RX to Arduino pin 11 (via 1K resistor)
Connect Sound module board TX to Arduino pin 10 (via 1K resistor)

Connect Sound module board Vcc to Arduino Vin when powered via USB (preferably 3.0)

else use seperate 5V power supply
Connect Sound module board GND to Arduino GND

General DF Player mini command structure (only byte 3, 5 and 6 to be entered in the serial monitor):

Byte Function Value

https://lesporteslogiques.net/wiki/

http://emoc.org/materiel/__MODULES/mp3_module_DFPlayer_mini/DFPlayer%20Mini%20Manual.pdf
https://lesporteslogiques.net/wiki/_media/openatelier/projet/telephone_bmr/dfplayer_mini_pin_map.png
https://lesporteslogiques.net/wiki/_export/code/openatelier/projet/telephone_bmr?codeblock=1

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

Start Byte Ox7E
Version Info OxFF (don't know why it's called Version Info)
Number of bytes 0x06 (Always 6 bytes)
Command Ox__

Command feedback Ox__ If enabled returns info with command 0x41 [0x01: info, 0x00: no info]
Parameter 1 [DH] Ox__
Parameter 2 [DL] Ox__

Checksum high
Checksum low

End

command OXEF

Checksum calculation.

Checksum

0x__ See explanation below. Is calculated in function: execute CMD
0Ox__ See explanation below. Is calculated in function: execute CMD

= -Sum(byte(1..6)) (2 bytes, notice minus sign!)

DF Player mini Commands without returned parameters (*=Confirmed command ?=Unknown, not clear or not validated)

CMD
HEX

0x04
0x05
0x06
0x07
0x08
0x09

0x0A

0x0B
0x0C

0x0D
OX0E
OXOF

0x10
Ox11

0x12

0x13
0x14
0x15
0x16
0x17
0x18
0x19
Ox1A

CMD
DEC

© o0 N LA

16
17

18

19
20
21
22
23
24
25
26

Commands

Function Description

Parameters(2 x 8 bit)

Next
Previous
Specify track(NUM)

Increase volume

Decrease volume

Specify volume

Specify Equalizer

Specify repeat(NUM)

Specify playback source (Datasheet)

Enter into standby — low power loss

Normal working (Datasheet)
Reset module

Play
Pause
Specify folder and file to playback

Volume adjust set (Datasheet)
Loop play

Play mp3 file [NUM] in mp3 folder

Unknown

Unknown

Unknown

Stop

Loop Folder "01"
Random play
Single loop
Pause

* % % 1

*

-~

[DH]=X, [DL]=X Next track in current folder.Loops when last file played
[DH]=X, [DL]=X Previous track in current folder.Loops when last file played
[DH]=highByte(NUM), [DL]=1owByte(NUM)

1~2999 Playing order is order in which the numbers are stored.

Filename and foldername are arbitrary, but when named starting with

an increasing number and then placed in one folder, files are (often)
played in that order and with correct track number.

e.g. 0001-Joe Jackson.mp3...0348-Lets dance.mp3)

[DH]=X, [DL]=X Increase volume by 1

[DH]=X, [DL]=X Decrease volume by 1

[DH]=X, [DL]= Volume (0-0x30) Default=0x30

[DH]=X, [DL]= EQ(0/1/2/3/4/5) [Normal/Pop/Rock/Jazz/Classic/Base]
[DH]=highByte(NUM), [DL]=lowByte(NUM).Repeat the specified track number
[DH]=X, [DL]= (0/1/2/3/4)Unknown. Seems to be overrided by automatic detection
(Datasheet: U/TF/AUX/SLEEP/FLASH)

[DH]=X, [DL]=X Works, but no command found yet to end standby

(insert TF-card again will end standby mode)

Unknown. No error code, but no function found

* [DH]=X, [DL]=X Resets all (Track = 0x01, Volume = 0x30)

Will return 0x3F initialization parameter (0x02 for TF-card)
"Clap" sound after excecuting command (no solution found)

* [DH]=X, [DL]=X Play pointered track
* [DH]=X, [DL]=X Pause track

*

~

[DH]=Folder, [DL]=File
Important: Folders must be named 01~99, files must be named 001~255
Unknown. No error code. Does not change the volume gain.

* [DH]=X, [DL]=(0x01:play, 0x00:stop play)

*

* K K KX NN N

Loop play all the tracks. Start at track 1.
[DH]=highByte(NUM), [DL]=lowByte(NUM)

Play mp3 file in folder named mp3 in your TF-card. File format exact
4-digit number (0001~2999) e.g. 0235.mp3

Unknown: Returns error code 0x07

Unknown: Returns error code 0x06

Unknown: Returns no error code, but no function found
[DH]=X, [DL]=X, Stop playing current track

[DH]=x, [DL]=1~255, Loops all files in folder named "01"
[DH]=X, [DL]=X Random all tracks, always starts at track 1
[DH]=0, [DL]=0 Loops the track that is playing

[DH]=X, [DL]=(0x01:pause, 0x00:stop pause)

with returned parameters (*=Confirmed command ?=Unknown, not clear or not validated)

CMD
HEX

0x40
0x41

0x42
0x43
0x44
0x45
0x46
0x47
0x48
0x49
Ox4A
0x4B
0x4C
0x4D
Ox4E

Ox4F

CMD
DEC

62

63

64
65

66
67
68
69
70
71
72
73
74
75
76
77
78

79

Function Description

Parameters(2 x 8 bit)

Medium inserted
Medium ejected
Finished track on U-disk

Finished track on TF-card
Finished track on Flash

Initialization parameters

Error
Reply

The current status

The current volume

The current EQ

The current playback mode

The current software version

The total number of U-disk files
The total number of TF-card files
The total number of flash files
Keep on (Datasheet)

The current track of U-Disk

The current track of TF card

The current track of Flash
Folder "01" [DH]=x, [DL]=1

The total number of folders

* * % % N

*

NN

XK K KN K K K X X X X ¥

[DH]=0, [DL]=(1:U-disk, 2:TF-card)

[DH]=0, [DL]=(1:U-disk, 2:TF-card)

[DH]=highByte(NUM), [DL]=lowByte(NUM)

Not validated. Returns track number when song is finished on U-Disk
[DH]=highByte(NUM), [DL]=lowByte(NUM)

Returns track number when song is finished on TF

[DH]=highByte(NUM), [DL]=lowByte(NUM)

Not validated. Returns track number when song is finished on Flash
[DH]=0, [DL]= 0 ~ OxOF. Returned code when Reset (0x12) is used.
(each bit represent one device of the low-four bits)

See Datasheet. 0x02 is TF-card. Error 0x01 when no medium is inserted.
[DH]=0, [DL]= 0~7 Error code(Returned codes not yet analyzed)

[DH]=0, [DL]= 0~? Return code when command feedback is high

0x00 no Error (Other returned code not known)

[DH] = Device number [DL] = 0 no play, 1 play

[DH]=0, [DL]= Volume (0x00-0x30)

[DH]=0, [DL]= EQ(0/1/2/3/4/5) [Normal/Pop/Rock/Jazz/Classic/Base]
[DH]=0, [DL]= (0x00: no CMD 0x08 used, 0x02: CMD 0x08 used, not usefull)
[DH]=0, [DL]= Software version. (My version is 5)

[DH]=highByte(NUM), [DL]=lowByte(NUM). Not validated
[DH]=highByte(NUM), [DL]=1owByte(NUM)

[DH]=highByte(NUM), [DL]=lowByte(NUM). Not validated

Unknown. No returned parameter

[DH]=highByte(NUM), [DL]=lowByte(NUM), Current track on all media
[DH]=highByte(NUM), [DL]=lowByte(NUM), Current track on all media
[DH]=highByte(NUM), [DL]=lowByte(NUM), Current track on all media
[DH]=0, [DL]=(NUM) Change to first track in folder "O1"

Returns number of files in folder "01"

[DH]=0, [DL]=(NUM), Total number of folders, including root directory

https://lesporteslogiques.net/wiki/

4/9

This software is free to use and free to share

Additional info can be found on DFRobot site, but is not very reliable
Additional info:http://www.dfrobot.com/index.php?route=product/product&product id=1121

Ype Brada 2015-04-06
*/

#include "SoftwareSerial.h"

define Start Byte Ox7E
define Version Byte OxFF
define Command Length 0x06
define End_Byte OXEF
define Acknowledge 0x00 //Returns info with command 0x41 [0x01l: info, 0x00: no info]

SoftwareSerial mySerial(10, 11);
void setup () {

Serial.begin(9600);
mySerial.begin (9600);

execute CMD(Ox3F, 0x00, 0x00); // Send request for initialization parameters
while (mySerial.available()<10) // Wait until initialization parameters are received (10 bytes)
delay(30); // Pretty long delays between succesive commands needed

// Set sound (0x06) to very low volume (0x05). Adept according used speaker and required volume
execute CMD(0x06, 0x00, 0x05);

1
I

void loop () {

if (Serial.available())

{
// Input Serial monitor: Command and the two parameters in DECIMAL numbers (NOT HEX)
// E.g. 3,0,1 (or 3 0 1 or 3;0;1) will play first track on the TF-card
byte Command = Serial.parselnt()
byte Parameterl = Serial.parselnt();
byte Parameter2 = Serial.parselnt();

// Write your input at the screen

Serial.print("Command : 0x");if (Command < 16) Serial.print("0"); Serial.print(Command, HEX);
Serial.print("("); Serial.print(Command, DEC)

Serial.print("); Parameter: 0x");if (Parameterl < 16) Serial.print("0");Serial.print(Parameterl, HEX);
Serial.print("("); Serial.print(Parameterl, DEC);

Serial.print("), 0Ox");if (Parameter2 < 16) Serial.print("0");Serial.print(Parameter2, HEX);

("("); Serlal print(Parameter2, DEC);Serial.println(")");

Serial.print

// Excecute the entered command and parameters
execute_CMD(Command, Parameterl, Parameter2);

}
if (mySerial.available()>=10)
{

// There is at least 1 returned message (10 bytes each)
// Read the returned code
byte Returned[10];
for (byte k=0; k<10; k++)
Returned[k] = mySerial.read();

// Write the returned code to the screen

Serial.print("Returned: 0x"); if (Returned[3] < 16) Serial.print("0"); Serial.print(Returned[3],6 HEX);
Serial.print("("); Serial.print(Returned[3], DEC);

Serial.print("); Parameter: 0x"); if (Returned[5] < 16) Serial.print("0"); Serial.print(Returned[5], HEX) ;
Serial.print("("); Serial.print(Returned[5], DEC);
)y
(

Serial.print 0x"); if (Returned(6] < 16) Serial.print("0"); Serial.print(Returned[6], HEX);
Serial.print("("); Serial.print(Returned(6], DEC); Serial.println(")");
}
}

void execute CMD(byte CMD, byte Parl, byte Par2)
// Excecute the command and parameters
{
// Calculate the checksum (2 bytes)
word checksum = - (Version_Byte + Command_Length + CMD + Acknowledge + Parl + Par2);
// Build the command line
byte Command_line[10] = { Start_Byte, Version_Byte, Command_Length, CMD, Acknowledge,
Parl, Par2, highByte(checksum), lowByte(checksum), End_Byte};
//Send the command line to the module
for (byte k=0; k<10; k++)
{
mySerial.write(Command_line[k]);
}

}
Préparer les fichiers

Les dossiers sont a nommer de 01 a 99, ils peuvent contenir des fichiers numérotés de 001 a 255, sous cette forme :

/01/001.mp3 # commande pour le jouer : myDFPlayer.playFolder(1l, 1);

https://lesporteslogiques.net/wiki/

/01/002.mp3 # commande pour le jouer : myDFPlayer.playFolder(1l, 2);
/01/003.mp3 # etc.

On peut préparer les fichiers avec ffmpeg, en les transformant de .wav a .mp3 :

#!/bin/bash
fichier .wav

ffmpeg -i $fichier -vn -ar 44100 -ac 2 -ab 320k -f mp3 01l/${fichier%.*}.mp3

Montage complet

Le montage complet est alimenté en 9V par un transfo externe, dont la tension est transformée en 5V pour alimenter
I'arduino. Le fil d'alimentation est enroulé (deux spires) autour d'un anneau de ferrite pour réduire les parasites

électromagnétiques qui parasitent le son. L'afficheur a 4 chiffres n'est pas utilisé et la sortie audio se fait sur le haut-parleur

du combiné. La diode D1 abaisse la tension de 5V a 4.2V pour alimenter le DFPlayer mini

IC1:7805
08668 R
€3:220 uF

(8]9]
0N+ ND)

D1 :1N4001

fritzing

telephone_BMR_complet.ino (cliquer pour afficher le code)

telephone_BMR_complet.ino

/* Téléphone BMR version 6
* SANS affichage 4 x 7 digits
* décodage de clavier matriciel
* et sortie audio
* soit sur sortie jack TRRS, cf. ci-dessous myDFPlayer.enableDAC();
* soit sur sortie combiné, avec l'ampli intégré au DFPlayer mini
* version 6 : détecte quand méme le clavier si pas de connection avec le DFPlayer
* Quimper, La Baleine, 6 mars 2018, pierre@lesporteslogiques.net
*/

[/ FRRFRAKKA AR KKK Kk KSR KSR K KKK K sk K K sk oK SRR K SRR Kk sk ok Kok ok ok
// Définitions pour l'afficheur 7 segments a 4 chiffres
/*

#include "SevenSegmentTM1637.h"

const byte PIN CLK
const byte PIN DIO
SevenSegmentTM1637
*/

/7 RRRskcksokskskokokskokokskokskokokskokkskokkskokokskksk sk stk skokkskok stk sk ok sk sk ok

2; // define CLK pin (any digital pin)
3; // define DIO pin (any digital pin)
display(PIN CLK, PIN DIO);

// Définitions pour le clavier matrice
#include <Keypad.h>

const byte ROWS = 4; //quatre rangées
const byte COLS = 4; //quatre colonnes
char keys[ROWS][COLS

'1Y,'2','3','2"

‘4','5",'6"','F'

'7','8','9"','2"

tRLTO, '# 'R

/* Correspondances entres les broches identifiées sur le téléphone et les pins de l'arduino

R1I : 7 c1: 8

R2 : 6 c2: 9

R3 : 5 c3 : 10

R4 : 4 4 : 11 */
byte rowPins[ROWS 7, 6, 5, 4}; // connecter les rangées a ces pins
byte colPins[COLS 8, 9, 10, 11}; // connecter les colonnes a ces pins

[/ FRAEIAR AR K ok ok sk ok Kok SK R SRR SR R oK R oK K ok ok sk ok Rk sk R SR R K R R R ok oK ok ok ok ok ok ok

https://lesporteslogiques.net/wiki/

6/9

https://lesporteslogiques.net/wiki/_media/openatelier/projet/telephone_bmr/telephone_bmr_circuit.png
https://lesporteslogiques.net/wiki/_export/code/openatelier/projet/telephone_bmr?codeblock=3

// Définitions pour le lecteur de son

#include "Arduino.h"

#include "SoftwareSerial.h"

#include "DFRobotDFPlayerMini.h"

SoftwareSerial mySoftwareSerial(12, 13); // RX, TX

DFRobotDFPlayerMini myDFPlayer;

void printDetail(uint8 t type, int value);

int DFPvolume = 18;

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS);
void setup() {

Serial.begin(9600);
// Initialiser l'afficheur & 4 chiffres

/*

display.begin(); // initializes the display
display.setBacklight(100); // set the brightness to 100 %
display.print("INIT"); // display INIT on the display
delay(1000); // wait 1000 ms

*/

mySoftwareSerial.begin(9600);

Serial.println();

Serial.println(F("DFRobot DFPlayer Mini Demo"));
Serial.println(F("Initializing DFPlayer ... (May take 3~5 seconds)"));

if (!'myDFPlayer.begin(mySoftwareSerial)) { //Use softwareSerial to communicate with mp3.
Serial.println(F("Unable to begin:"));
Serial.println(F("1.Please recheck the connection!"));
Serial.println(F("2.Please insert the SD card!"));
//while(true);
delay(1000);
Serial.println(F("Lancement en mode test clavier"));
} else {
Serial.println(F("DFPlayer Mini online."));

myDFPlayer.setTimeOQut (500); //Set serial communictaion time out 500ms
//myDFPlayer.enableDAC(); // pour branchement casque ou sortie ligne
delay (500);

myDFPlayer.volume (DFPvolume); //Set volume value. From 0 to 30
delay(300);

Serial.print("nb de fichiers presents dans le repertoire 01 : ");
Serial.println(myDFPlayer.readFileCountsInFolder(1));
//myDFPlayer.play(1); //Play the first mp3
}
}

void loop() {
static unsigned long timer = millis();
char key = keypad.getKey();

it (key){
//display.print(key);
Serial.println(key);
if (millis() - timer > 1000) {
playSound(key) ;
timer = millis();
//myDFPlayer.next(); //Play next mp3 every 3 second.
}
delay(300);

if (myDFPlayer.available()) {
printDetail (myDFPlayer.readType(), myDFPlayer.read()); //Print the detail message from DFPlayer to handle different errors
and states.

}
} /*else {
display.clear();
}*/
}

void playSound(char key) {

myDFPlayer.volume (DFPvolume) ;
delay(100);

switch(key) {

case '0':
myDFPlayer.playFolder(1, 1); //jouer le mp3 SD:/01/001.mp3; Folder Name(1~99); File Name(1~255)
break;

case 'l':
myDFPlayer.playFolder(1, 2);
break;

case '2':

https://lesporteslogiques.net/wiki/

myDFPlayer.playFolder(1, 3
break

i3
myDFPlayer.playFolder(1, 4
break

4
myDFPlayer.playFolder(1, 5
break

5
myDFPlayer.playFolder(1, 6
break

6
myDFPlayer.playFolder(1, 7
break

7
myDFPlayer.playFolder(1, 8
break

g
myDFPlayer.playFolder(1, 9
break

gt
myDFPlayer.playFolder(1, 10
break

Lk
myDFPlayer.playFolder(1, 11
break

g
myDFPlayer.playFolder(1, 12
break

E
myDFPlayer.playFolder(1, 13
break

R
myDFPlayer.playFolder(1, 14
break

void printDetail(uint8 t type, int value
type
TimeOut
Serial.println(F("Time OQut!"
break
WrongStack
Serial.println(F("Stack Wrong!"
break
DFPlayerCardInserted
Serial.println(F("Card Inserted!"
break
DFPlayerCardRemoved
Serial.println(F("Card Removed!"
break
DFPlayerCardOnline
Serial.println(F("Card Online!"
break
DFPlayerPlayFinished
Serial.print(F("Number:"
Serial.print(value
Serial.println(F(" Play Finished!"
break
DFPlayerError
Serial.print(F("DFPlayerError:"
value
Busy
Serial.println(F("Card not found"
break
Sleeping
Serial.println(F("Sleeping"
break
SerialWrongStack
Serial.println(F("Get Wrong Stack"
break
CheckSumNotMatch
Serial.println(F("Check Sum Not Match"
break
FileIndexOut
Serial.println(F("File Index Out of Bound"
break
FileMismatch
Serial.println(F("Cannot Find File"
break
Advertise
Serial.println(F("In Advertise"
break

break
break

break

https://lesporteslogiques.net/wiki/

Sources et ressources

Bibliothéque arduino keypad : http://playground.arduino.cc/Code/Keypad

Bibliotheque pour afficheur 4 digits 7 segments de Bram Harmsen : https://github.com/bremme/arduino-tm1637
Utiliser un clavier matriciel : https://playground.arduino.cc/Main/KeypadTutorial

Fabricant de la puce pour lire les MP3 : http://www.yxin18.com/kp/2015102450.html

Fabricant du module DFPlayer mini : https://wiki.dfrobot.com/DFPlayer_Mini_SKU_DFR0299

Jouer du son avec un DFPlayer mini (trés complet!) :
http://markus-wobisch.blogspot.com/2016/09/arduino-sounds-dfplayer.html

DFPlayer sans arduino et sans bouton : https://www.youtube.com/watch?v=0x03Bm3V_kM

Article extrait de : https://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : https://lesporteslogiques.net/wiki/openatelier/projet/telephone_bmr
Article mis a jour: 2023/07/19 13:45

https://lesporteslogiques.net/wiki/

9/9

http://playground.arduino.cc/Code/Keypad
https://github.com/bremme/arduino-tm1637
https://playground.arduino.cc/Main/KeypadTutorial
http://www.yxin18.com/kp/2015102450.html
https://wiki.dfrobot.com/DFPlayer_Mini_SKU_DFR0299
http://markus-wobisch.blogspot.com/2016/09/arduino-sounds-dfplayer.html
https://www.youtube.com/watch?v=oxo3Bm3V_kM
https://lesporteslogiques.net/wiki/
https://lesporteslogiques.net/wiki/openatelier/projet/telephone_bmr

	Téléphone BMR
	Réutiliser le haut parleur du téléphone
	Réutiliser le clavier du téléphone
	Utiliser un DFPlayer mini
	Préparer les fichiers

	Montage complet
	Sources et ressources

