WIKI Les Portes Logiques
Adresse de I'article : https://lesporteslogiques.net/wiki/openatelier/projet/telephone_bmr?rev=1583240615
Article mis a jour le : 2020/03/03 14:03 / Imprimé le 2026/01/19 11:09

arduino, lecteur-son, em

Téléphone BMR

C'est un superbe téléphone sensuel en forme de bouche qui a servi a diffuser une suite d'entretiens sur le sujet des regles. Il
a été utilisé comme borne d'écoute pour la journée/soirée “Bois mes régles” organisée par Gast! a Quimperia / La Baleine en
mars 2018.

Le clavier du téléphone permet de déclencher la lecture d'un enregistrement que I'on peut écouter dans le combiné, comme
un téléphone quoi!

Le circuit du téléphone est remplacé par un arduino nano qui déclenche la lecture d'un fichier mp3 par un circuit DFPlayer, le
haut-parleur utilisé est le haut-parleur original du combiné. Le clavier original du téléphone est aussi réutilisé et I'ensemble
est alimenté par un transfo qui récupere le courant du secteur pour en faire un courant 9V continu.

Réutiliser le haut parleur du téléphone
Le combiné est relié au poste par une prise RJ11 (seuls quatre fils sont utilisés) :

Vert : micro
Rouge : micro
Jaune : HP
Noir : HP

On se servira des fils jaunes et noirs pour relier le haut-parleur au circuit

Réutiliser le clavier du téléphone

Chaque touche active une liaison entre deux broches.
Méthode pour retrouver la matrice :

e numéroter les broches ou les nommer

e sur du papier, dessiner une grille avec autant de colonnes et de rangées que sur le clavier et dessiner le clavier

e en utilisant un multimetre pour tester la continuité, tester toutes les combinaisons de broches possibles, en appuyant
sur chaque touche, 'une apres Il'autre

e noter pour chaque touche les 2 broches utilisées

Connexions du clavier sur nappe : R4, R3, R2, R1, VSS, C1, C2, C3, C4, PT

Cl/C2/C3| C4

R1
R2
R3
R4

FLASH

AN N -

o|o|u|n
#lo|lo|w

REDIAL

https://lesporteslogiques.net/wiki/ 1/9

https://lesporteslogiques.net/wiki/tag/arduino?do=showtag&tag=arduino
https://lesporteslogiques.net/wiki/tag/lecteur-son?do=showtag&tag=lecteur-son
https://lesporteslogiques.net/wiki/tag/em?do=showtag&tag=em
https://fr.wikipedia.org/wiki/RJ11
https://lesporteslogiques.net/wiki/openatelier/projet/telephone_bmr?rev=1583240615

fritzing

telephone_BMR_test_clavier_002.ino (cliquer pour afficher le code)

telephone_BMR _test_clavier_002.ino

/* deuxieme essai avec une autre library pour l'afficheur 7 segment
* https://github.com/bremme/arduino-tml637
* SevenSegmentTM1637 de Bram Harmsen
*/

[/ RFEREREAAAA KA KA A AAAAA KA KKK KA A A AK A AR AR AR KK KKK
// Définitions pour l'afficheur U7 segments a 4 chiffres
#include "SevenSegmentTM1637.h"

const byte PIN CLK = 2 // define CLK pin (any digital pin)
const byte PIN DIO = 3 // define DIO pin (any digital pin)
SevenSegmentTM1637 display(PIN_CLK, PIN_DIO

// 3k 3k 3k 3K >k 5k 5k 5k 3k K 3k % 5k 5k 3k 3k 3k 5k K 5k 5k 3k 3k 5k 5K 5k 5k 5k 3K 5k 3k %k 5K >k 5k 3k 3k %k % >k 5k 5k 3k 5k >k %k *k >k >k k k
// Définitions pour le clavier matrice
#include <Keypad.h>

const byte ROWS = 4; //quatre rangées
const byte COLS = 4; //quatre colonnes
char keys[ROWS][COLS

‘1Y,'2','3','2"

‘4','5','6"','F'

'7','8','9",'Z2'

PRTTOY, T#Y, 'R

/* Correspondances entres les broches identifiées sur le téléphone et les pins de l'arduino

RI : 7 c1: 8

R2 : 6 c2: 9

R3 : 5 €3 : 10

R4 : 4 c4 : 11 */
byte rowPins[ROWS 7, 6, 5, 4}; // connecter les rangées a ces pins
byte colPins[COLS 8, 9, 10, 11}; // connecter les colonnes a ces pins

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS
void setup
Serial.begin (9600

// Initialiser l'afficheur a 4 chiffres
display.begin // initializes the display

display.setBacklight (100

set the brightness to 100 %

display.print("INIT" // display INIT on the display
delay (1000 // wait 1000 ms
void loop

char key keypad.getKey

key
display.print(key
Serial.println(key
delay (300

display.clear

https://lesporteslogiques.net/wiki/

https://lesporteslogiques.net/wiki/_media/openatelier/projet/telephone_bmr/nano_matrix_keyboard_4_digit_7_segment_bb.png
https://lesporteslogiques.net/wiki/_export/code/openatelier/projet/telephone_bmr?codeblock=0

Utiliser un DFPlayer mini

Pour utiliser le DFPlayer mini je me suis basé sur la documentation du fabricant du module (DFRobot), mais j'ai pu lire des

commentaires sur cette doc. qui disianet qu'elle est incompléte, et Ype Brada a proposé le code ci-dessous pour utiliser

toutes les fonctions du DFPlayer mini. Je me suis aussi rendu compte qu'il fallait utiliser myDFPlayer.enableDAC() ; pour

permettre la sortie sur le DAC (pour ampli, casque, etc.)

DFPlayer_Command_Discovery.ino (cliquer pour afficher le code)

DFPlayer_Command_Discovery.ino

/*
DF Player mini command discovery

Program is mend to discover all the possibilities of the command
structure of the DFPlayer mini. No special libraries are needed.

In general, there are 3 ways to address a MP3 or WAV file:

(1) Track order:
All songs are stored a certain order on the card. The order is however
not garanteed and very depending on the order how the files were written to the card. This
method is not suitable when it is absolutly neccessary that a specific track is played. Commands
using this written order are (0x01, 0x02, 0x03, 0x08, 0x11, 0x3C, 0x3D, Ox3E, 0x4B, 0x4C, 0x4D).
The name of a song is arbitrary

(2) Folder number and song number:
Folders are named 01~99 and songs 001~255.mp3 or 001~255.WAV. It's possible to exactly address
a specific song with command 0xOF. Command 0x17 is related. When adressing a specific file,
the file is always internaly converted to the stored track number. This number can be requested by
commands 0x4B, 0x4C or 0x4D.

(3) Folder named "mp3" and song number:
A folder is named "mp3" and songs with a name of exact a 4-digit number (0001~2999) e.g. 0235.mp3.
It's possible to exactly address a specific song with command 0x12.The according track number can
be requested by commands 0x4B, 0x4C or 0x4D.

This program is simple and can be the basis for your own mp3 player sketch.
Note: The DF Player commands are not always correct described in the manual. I tried to fix it, but
there is still a something to do. The commands recoverd so far are listed below.

How to use this sketch:

Enter three (separated) DECIMAL numbers in the Serial Monitor with no end of line character
First number : Command

Second number: First (High Byte) parameter

Third number : Second (Low Byte) parameter

E.g.: 3,0,1 will play the first track on the TF card

VERY IMPORTANT: Use serial 1K resistors or a level shifter between module RX and TX
and Arduino to suppress audio noise

Connect Sound module board RX to Arduino pin 11 (via 1K resistor)

Connect Sound module board TX to Arduino pin 10 (via 1K resistor)

Connect Sound module board Vcc to Arduino Vin when powered via USB (preferably 3.0)
else use seperate 5V power supply

Connect Sound module board GND to Arduino GND

General DF Player mini command structure (only byte 3, 5 and 6 to be entered in the serial monitor):

Byte Function Value

(0) Start Byte Ox7E

(1) Version Info OxFF (don't know why it's called Version Info)

(2) Number of bytes 0x06 (Always 6 bytes)

(3) Command Ox__

(4) Command feedback Ox__ If enabled returns info with command 0x41 [0x01: info, 0x00: no info]

(5) Parameter 1 [DH] 0Ox
(6) Parameter 2 [DL] Ox

(7) Checksum high Ox__ See explanation below. Is calculated in function: execute CMD
(8) Checksum low 0x__ See explanation below. Is calculated in function: execute CMD
(9) End command OXEF

Checksum calculation.

Checksum = -Sum(byte(1..6)) (2 bytes, notice minus sign!)

https://lesporteslogiques.net/wiki/

https://lesporteslogiques.net/wiki/_media/openatelier/projet/telephone_bmr/dfplayer_mini_pin_map.png
https://lesporteslogiques.net/wiki/_export/code/openatelier/projet/telephone_bmr?codeblock=1

DF Player mini Commands without returned parameters (*=Confirmed command ?=Unknown, not clear or not validated)

CMD - CMD
HEX DEC

0x04
0x05
0x06
0x07
0x08
0x09

Ox0A

0x0B
0x0C

0x0D
Ox0E
Ox0OF

0x10
0x11

0x12

0x13
0x14
0x15
0x16
0x17
0x18
0x19
Ox1A

© oo NS LA

16
17

18

19
20
21
22
23
24
25
26

Commands

Function Description

Parameters(2 x 8 bit)

Next
Previous
Specify track(NUM)

Increase volume

Decrease volume

Specify volume

Specify Equalizer

Specify repeat(NUM)

Specify playback source (Datasheet)

Enter into standby — low power loss

Normal working (Datasheet)
Reset module

Play
Pause
Specify folder and file to playback

Volume adjust set (Datasheet)
Loop play

Play mp3 file [NUM] in mp3 folder

Unknown

Unknown

Unknown

Stop

Loop Folder "01"
Random play
Single loop
Pause

* % % N

¥ ¥ X X *

*

~

[DH]=X, [DL]=X Next track in current folder.Loops when last file played
[DH]=X, [DL]=X Previous track in current folder.Loops when last file played
[DH]=highByte(NUM), [DL]=lowByte(NUM)

1~2999 Playing order is order in which the numbers are stored.

Filename and foldername are arbitrary, but when named starting with

an increasing number and then placed in one folder, files are (often)
played in that order and with correct track number

e.g. 0001-Joe Jackson.mp3...0348-Lets dance.mp3)

[DH]=X, [DL]=X Increase volume by 1

[DH]=X, [DL]=X Decrease volume by 1

[DH]=X, [DL]= Volume (0-0x30) Default=0x30

[DH]=X, [DL]= EQ(0/1/2/3/4/5) [Normal/Pop/Rock/Jazz/Classic/Base]
[DH]=highByte(NUM), [DL]=lowByte(NUM).Repeat the specified track number
[DH]=X, [DL]= (0/1/2/3/4)Unknown. Seems to be overrided by automatic detection
(Datasheet: U/TF/AUX/SLEEP/FLASH)

[DH]=X, [DL]=X Works, but no command found yet to end standby

(insert TF-card again will end standby mode)

Unknown. No error code, but no function found

* [DH]=X, [DL]=X Resets all (Track = 0x01, Volume = 0x30)

Will return Ox3F initialization parameter (0x02 for TF-card)
"Clap" sound after excecuting command (no solution found)

* [DH]=X, [DL]=X Play pointered track

*

*

~

[DH]=X, [DL]=X Pause track

[DH]=Folder, [DL]=File

Important: Folders must be named 01~99, files must be named 001~255
Unknown. No error code. Does not change the volume gain.

* [DH]=X, [DL]=(0x01:play, 0x00:stop play)

*

* K K X X N NN

Loop play all the tracks. Start at track 1.
[DH]=highByte(NUM), [DL]=1owByte(NUM)

Play mp3 file in folder named mp3 in your TF-card. File format exact
4-digit number (0001~2999) e.g. 0235.mp3

Unknown: Returns error code 0x07

Unknown: Returns error code 0x06

Unknown: Returns no error code, but no function found
[DH]=X, [DL]=X, Stop playing current track

[DH]=x, [DL]=1~255, Loops all files in folder named "01"
[DH]=X, [DL]=X Random all tracks, always starts at track 1
[DH]=0, [DL]=0 Loops the track that is playing

[DH]=X, [DL]=(0x01:pause, 0x00:stop pause)

with returned parameters (*=Confirmed command ?=Unknown, not clear or not validated)

CMD CMD
HEX DEC

0x40
0x41

0x42
0x43
0x44
0x45
0x46
0x47
0x48
0x49
0Ox4A
0x4B
0x4C
0x4D
Ox4E

0x4F

62

63

64
65

66
67
68
69
70
71
72
73
74
75
76
77
78

79

Function Description

Parameters(2 x 8 bit)

Medium inserted
Medium ejected
Finished track on U-disk

Finished track on TF-card
Finished track on Flash

Initialization parameters

Error
Reply

The current status

The current volume

The current EQ

The current playback mode

The current software version

The total number of U-disk files
The total number of TF-card files
The total number of flash files
Keep on (Datasheet)

The current track of U-Disk

The current track of TF card

The current track of Flash
Folder "01" [DH]=x, [DL]=1

The total number of folders

* * % % 1l

*

NN

X K K K NOX K K X X X X ¥

This software is free to use and free to share

[DH]=0, [DL]=(1:U-disk, 2:TF-card)

[DH]=0, [DL]=(1:U-disk, 2:TF-card)

[DH]=highByte(NUM), [DL]=lowByte(NUM)

Not validated. Returns track number when song is finished on U-Disk
[DH]=highByte(NUM), [DL]=lowByte(NUM)

Returns track number when song is finished on TF

[DH]=highByte(NUM), [DL]=1owByte(NUM)

Not validated. Returns track number when song is finished on Flash
[DH]=0, [DL]= 0 ~ O0xOF. Returned code when Reset (0x12) is used.
(each bit represent one device of the low-four bits)

See Datasheet. 0x02 is TF-card. Error 0x01 when no medium is inserted.
[DH]=0, [DL]= 0~7 Error code(Returned codes not yet analyzed)

[DH]=0, [DL]= 0~? Return code when command feedback is high

0x00 no Error (Other returned code not known)

[DH] = Device number [DL] = 0 no play, 1 play

[DH]=0, [DL]= Volume (0x00-0x30)

[DH]=0, [DL]= EQ(0/1/2/3/4/5) [Normal/Pop/Rock/Jazz/Classic/Base]
[DH]=0, [DL]= (0x00: no CMD 0x08 used, 0x02: CMD 0x08 used, not usefull)
[DH]=0, [DL]= Software version. (My version is 5)

[DH]=highByte(NUM), [DL]=lowByte(NUM). Not validated
[DH]=highByte(NUM), [DL]=lowByte(NUM)

[DH]=highByte(NUM), [DL]=lowByte(NUM). Not validated

Unknown. No returned parameter

[DH]=highByte(NUM), [DL]=lowByte(NUM), Current track on all media
[DH]=highByte(NUM), [DL]=lowByte(NUM), Current track on all media
[DH]=highByte(NUM), [DL]=lowByte(NUM), Current track on all media
[DH]=0, [DL]=(NUM) Change to first track in folder "01"

Returns number of files in folder "01"

[DH]=0, [DL]=(NUM), Total number of folders, including root directory

Additional info can be found on DFRobot site, but is not very reliable
Additional info:http://www.dfrobot.com/index.php?route=product/product&product id=1121

Ype Brada 2015-04-06

*/
#include "SoftwareSerial.h"
define Start Byte Ox7E

define Version Byte OXFF
define Command Length 0x06

https://lesporteslogiques.net/wiki/

4/9

define End_Byte OXEF
define Acknowledge 0x00 //Returns info with command 0x41 [0x01: info, 0x00: no info]

SoftwareSerial mySerial(10, 11
void setup

Serial.begin (9600
mySerial.begin (9600

execute CMD(Ox3F, 0x00, 0x00 // Send request for initialization parameters
while (mySerial.available 10) // Wait until initialization parameters are received (10 bytes)
delay (30 // Pretty long delays between succesive commands needed

// Set sound (0x06) to very low volume (0x05). Adept according used speaker and required volume
execute CMD(0x06, 0x00, 0x05

void loop
if (Serial.available

// Input Serial monitor: Command and the two parameters in DECIMAL numbers (NOT HEX)
// E.g. 3,0,1 (or 3 0 1 or 3;0;1) will play first track on the TF-card

byte Command Serial.parselnt

byte Parameterl = Serial.parselnt

byte Parameter2 = Serial.parselnt

// Write your input at the screen

Serial.print("Command : 0x");if (Command 16) Serial.print("0" Serial.print(Command, HEX
Serial.print("(" Serial.print(Command, DEC

Serial.print Parameter: 0x");if (Parameterl 16) Serial.print("0");Serial.print(Parameterl, HEX
Serial.print Serial.print(Parameterl, DEC

Serial.print 0x");if (Parameter2 < 16) Serial.print("0");Serial.print(Parameter2, HEX
Serial.print("("); Serial.print(Parameter2, DEC);Serial.println(")"

(

")
"),
// Excecute the entered command and parameters
execute CMD(Command, Parameterl, Parameter2

if (mySerial.available 10

// There is at least 1 returned message (10 bytes each)
// Read the returned code
byte Returned|10
for (byte k=0; k<10; k
Returned|k mySerial.read

// Write the returned code to the screen

Serial.print("Returned: 0x" if (Returned|3 16) Serial.print("0" Serial.print(Returned[3], HEX
Serial.print("("); Serial.print(Returned[3], DEC

Serial.print("); Parameter: 0Ox" if (Returned|[5 16) Serial.print("0" Serial.print(Returned[5], HEX
Serial.print (" (" Serial.print(Returned|5 DEC

Serial.print("), 0Ox" if (Returned|6 16) Serial.print("0" Serial.print(Returned[6], HEX
Serial.print("(" Serial.print(Returned|[6 DEC Serial.println(")"

void execute CMD(byte CMD, byte Parl, byte Par2

// Excecute the command and parameters

// Calculate the checksum (2 bytes)

word checksum Version Byte + Command Length + CMD + Acknowledge + Parl + Par2
// Build the command line
byte Command_line[10 Start_Byte, Version_Byte, Command_Length, CMD, Acknowledge

Parl, Par2, highByte(checksum), lowByte(checksum), End_Byte
//Send the command line to the module
for (byte k=0; k<10; k

mySerial.write(Command_line[k

Préparer les fichiers

Les dossiers sont a nommer de 01 a 99, ils peuvent contenir des fichiers numérotés de 001 a 255, sous cette forme :

/01/001.mp3 # commande pour le jouer : myDFPlayer.playFolder(1l, 1);
/01/002.mp3 # commande pour le jouer : myDFPlayer.playFolder(1l, 2);
/01/003.mp3 # etc.

On peut préparer les fichiers avec ffmpeg, en les transformant de .wav a .mp3:

#!/bin/bash
for fichier in *.wav
do
ffmpeg -i $fichier -vn -ar 44100 -ac 2 -ab 320k -f mp3 01l/${fichier%.*}.mp3
done

https://lesporteslogiques.net/wiki/

Montage complet

Le montage complet est alimenté en 9V par un transfo externe, dont la tension est transformée en 5V pour alimenter
I'arduino. Le fil d'alimentation est enroulé (deux spires) autour d'un anneau de ferrite pour réduire les parasites
électromagnétiques qui parasitent le son. L'afficheur a 4 chiffres n'est pas utilisé et la sortie audio se fait sur le haut-parleur
du combiné. La diode D1 abaisse la tension de 5V a 4.2V pour alimenter le DFPlayer mini

ICl.:7805

0866 EERG

88 51 & Rao01
0l #ND]

fritzing

telephone_BMR_complet.ino (cliquer pour afficher le code)

telephone_BMR_complet.ino

/* Téléphone BMR version 6

* SANS affichage 4 x 7 digits

décodage de clavier matriciel

* et sortie audio

* soit sur sortie jack TRRS, cf. ci-dessous myDFPlayer.enableDAC();

* soit sur sortie combiné, avec l'ampli intégré au DFPlayer mini

* version 6 : détecte quand méme le clavier si pas de connection avec le DFPlayer
* Quimper, La Baleine, 6 mars 2018, pierre@lesporteslogiques.net

*/

// >k 3k >k 3k 3k >k K >k 3K K 3k 3k %k 5K 3k >k 3k %k 3k 3k %k Sk >k 3k 3k >k 5k kK 5k 3k 3k 3K 5k 5k 3k >k 3k %k 5k 3k %k k k 5k %k >k 5k kK k-
// Définitions pour l'afficheur 7 segments a 4 chiffres
/*’

#include "SevenSegmentTM1637.h"

const byte PIN CLK = 2; // define CLK pin (any digital pin)
const byte PIN DIO = 3; // define DIO pin (any digital pin)
SevenSegmentTM1637 display(PIN_CLK, PIN _DIO);

*/

[/ FFFRFAAA KKK A AR KK KKK KKK KKK SK KKK KK K Kok KoK ok oK oK

// Définitions pour le clavier matrice
#include <Keypad.h>

const byte ROWS = 4; //quatre rangées
const byte COLS = 4; //quatre colonnes
char keys[ROWS][COLS

‘1,232

‘4','5','6"','F'

'7','8','9",'Z2'

PRUTO, '#Y 'R

/* Correspondances entres les broches identifiées sur le téléphone et les pins de l'arduino

R1 : 7 c1: 8

R2 : 6 c2: 9

R3 : 5 c3 : 10

R4 : 4 c4 : 11 */
byte rowPins[ROWS 7, 6, 5, 4}; // connecter les rangées a ces pins
byte colPins[COLS 8 9, 10, 11}; // connecter les colonnes a ces pins

[/ FRREARRRA R KR KRR KRR sk KKK KK K oK R Sk R sk koK sk R oK sk Kok Kok K sk ok ok
// Définitions pour le lecteur de son

#include "Arduino.h"

#include "SoftwareSerial.h"

#include "DFRobotDFPlayerMini.h"

SoftwareSerial mySoftwareSerial(12, 13); // RX, TX
DFRobotDFPlayerMini myDFPlayer

void printDetail(uint8 t type, int value

int DFPvolume 18

Keypad keypad = Keypad(makeKeymap (keys rowPins, colPins, ROWS, COLS

https://lesporteslogiques.net/wiki/ 6/9

https://lesporteslogiques.net/wiki/_media/openatelier/projet/telephone_bmr/telephone_bmr_circuit.png
https://lesporteslogiques.net/wiki/_export/code/openatelier/projet/telephone_bmr?codeblock=3

void setup() {

Serial.begin(9600);
// Initialiser l'afficheur a 4 chiffres

/*

display.begin(); // initializes the display
display.setBacklight(100); // set the brightness to 100 %
display.print("INIT"); // display INIT on the display
delay(1000); // wait 1000 ms

*/

mySoftwareSerial.begin(9600);

Serial.println();

Serial.println(F("DFRobot DFPlayer Mini Demo"));
Serial.println(F("Initializing DFPlayer ... (May take 3~5 seconds)"));

if (!myDFPlayer.begin(mySoftwareSerial)) { //Use softwareSerial to communicate with mp3.
Serial.println(F("Unable to begin:"));
Serial.println(F("1.Please recheck the connection!"));
Serial.println(F("2.Please insert the SD card!"));
//while(true);
delay(1000);
Serial.println(F("Lancement en mode test clavier"));
} else {
Serial.println(F("DFPlayer Mini online."));

myDFPlayer.setTimeOQut (500); //Set serial communictaion time out 500ms
//myDFPlayer.enableDAC(); // pour branchement casque ou sortie ligne
delay(500);

myDFPlayer.volume (DFPvolume); //Set volume value. From O to 30
delay(300);

Serial.print("nb de fichiers presents dans le repertoire 01 : ");
Serial.println(myDFPlayer.readFileCountsInFolder(1));
//myDFPlayer.play(1); //Play the first mp3
}
}

void loop() {
static unsigned long timer = millis();
char key = keypad.getKey();

it (key){
//display.print(key);
Serial.println(key);
if (millis() - timer = 1000) {
playSound (key) ;
timer = millis();
//myDFPlayer.next(); //Play next mp3 every 3 second.

}
delay(300);

if (myDFPlayer.available()) {
printDetail (myDFPlayer.readType(), myDFPlayer.read()); //Print the detail message from DFPlayer to handle different errors
and states.
}
} /*else {
display.clear();
}*/
}

void playSound(char key) {

myDFPlayer.volume (DFPvolume) ;
delay(100);

switch(key) {
case '0':
myDFPlayer.playFolder(1, 1); //jouer le mp3 SD:/01/001.mp3; Folder Name(1~99); File Name(1~255)
break;
case 'l1':
myDFPlayer.playFolder(1, 2);
break;
case '2':
myDFPlayer.playFolder(1, 3);
break;
case '3':
myDFPlayer.playFolder(1, 4);
break;
case '4':
myDFPlayer.playFolder(1, 5);
break;
case '5':
myDFPlayer.playFolder(1, 6);
break;
case '6':
myDFPlayer.playFolder(1, 7);

https://lesporteslogiques.net/wiki/

break

7
myDFPlayer.playFolder
break

gt
myDFPlayer.playFolder
break

gt
myDFPlayer.playFolder
break

Lk

=
)

-
©

=

10

-

myDFPlayer.playFolder 11
break

g
myDFPlayer.playFolder
break

Fr
myDFPlayer.playFolder
break

R
myDFPlayer.playFolder
break

=

12

=

13

=

14

void printDetail(uint8 t type, int value
type
TimeOut
Serial.println(F("Time Out!"
break
WrongStack
Serial.println(F("Stack Wrong!"
break
DFPlayerCardInserted
Serial.println(F("Card Inserted!"
break
DFPlayerCardRemoved
Serial.println(F("Card Removed!"
break
DFPlayerCardOnline
Serial.println(F("Card Online!"
break
DFPlayerPlayFinished
Serial.print(F("Number:"
Serial.print(value
Serial.println(F(" Play Finished!"
break
DFPlayerError
Serial.print(F("DFPlayerError:"
value
Busy
Serial.println(F("Card not found"
break
Sleeping
Serial.println(F("Sleeping
break
SerialWrongStack
Serial.println(F("Get Wrong Stack"
break
CheckSumNotMatch
Serial.println(F("Check Sum Not Match"
break
FileIndexOut
Serial.println(F("File Index Out of Bound"
break
FileMismatch
Serial.println(F("Cannot Find File"
break
Advertise
Serial.println(F("In Advertise"
break

break
break

break

Sources et ressources

Bibliotheque arduino keypad : http://playground.arduino.cc/Code/Keypad

Bibliotheque pour afficheur 4 digits 7 segments de Bram Harmsen : https://github.com/bremme/arduino-tm1637
Utiliser un clavier matriciel : https://playground.arduino.cc/Main/KeypadTutorial

Fabricant de la puce pour lire les MP3 : http://www.yxin18.com/kp/2015102450.html

Fabricant du module DFPlayer mini : https://wiki.dfrobot.com/DFPlayer_Mini_SKU_DFR0299

https://lesporteslogiques.net/wiki/

8/9

http://playground.arduino.cc/Code/Keypad
https://github.com/bremme/arduino-tm1637
https://playground.arduino.cc/Main/KeypadTutorial
http://www.yxin18.com/kp/2015102450.html
https://wiki.dfrobot.com/DFPlayer_Mini_SKU_DFR0299

Jouer du son avec un DFPlauer mini (tres complet!) :
http://markus-wobisch.blogspot.com/2016/09/arduino-sounds-dfplayer.html

Article extrait de : https://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : https://lesporteslogiques.net/wiki/openatelier/projet/telephone_bmr?rev=1583240615
Article mis a jour: 2020/03/03 14:03

https://lesporteslogiques.net/wiki/

9/9

http://markus-wobisch.blogspot.com/2016/09/arduino-sounds-dfplayer.html
https://lesporteslogiques.net/wiki/
https://lesporteslogiques.net/wiki/openatelier/projet/telephone_bmr?rev=1583240615

	Téléphone BMR
	Réutiliser le haut parleur du téléphone
	Réutiliser le clavier du téléphone
	Utiliser un DFPlayer mini
	Préparer les fichiers

	Montage complet
	Sources et ressources

