WIKI Les Portes Logiques
Adresse de I'article : https://lesporteslogiques.net/wiki/openatelier/projet/tete_animatronique?rev=1686750243
Article mis a jour le : 2023/06/14 15:44 / Imprimé le 2026/01/28 18:15

impression 3D, animatronique, marionnette, raspberry-pi, electronique, em

[] Téte de marionnette animatronique

(Cette téte fait partie du projet Barbichette)

Fabrication d'une téte animatronique. Le projet original est diffusé sous licence libre par Rolf Jethon et se compose d'une
partie hardware : mécanique (piéces a imprimer, visserie, etc), électronique (raspberry pi ou orange pi, contréleur de
servomoteurs, servomoteurs, etc.) et d'une partie software développée par I'auteur (en perl!), les README donne des infos
sur l'articulation du systéme logiciel.

Le systéme permet de synchroniser des mouvements de servomoteurs pré-enregistrés avec des fichiers audio MP3 et de les
rejouer. 16 servomoteurs sont controlables grace au driver PCA9685, I'audio est joué sur la sortie audio du Raspberry Pi. Les
mouvements de servo sont enregistrés sur une base de temps de 50ms.

e Site du projet : https://bechele.de/?page_id=70

e Bouche et sourcils : https://www.thingiverse.com/thing:2863069
Paire-d'yeux-indépendants—+https://www.thingiverse.com/thing:2781756
Paire d'yeux améliorée : https://www.thingiverse.com/thing:4058084
Software : https://bechele.de/?page_id=73

README du software : https://bechele.de/?page_id=188

Le projet est aussi présenté en détail sur ce blog https://zappedmyself.com/animatronics/bechele2-info/

Réglages particuliers
Avec le filament PLA Unite blanc, quelques piéces ont eu des difficultés d'impression : couche trop fragile au niveau des

trous horizontaux. Quelques réglages d'impression adaptés : se baser sur le profil fine 0.1mm, changer : couche
d'impression 0.12mm, vitesse d'impression 40mm, flow 110%

Yeux

Les fichiers sont fournis en stl sur thingiverse, je les ai réunis en 6 lots pour faciliter I'impression.
Le montage est expliqué, étape par étape dans cette vidéo : https://www.youtube.com/watch?v=U1c4R2EB83A

Impression

Différentes piéeces :

Les fichiers sont slicés avec Cura pour Ender 3 avec une épaisseur de couches de 0.12mm
Durée d'impression

e |ot 1:40 minutes
e |ot 2 : 20 minutes
e |ot 3:2h20

https://lesporteslogiques.net/wiki/ 1/13

https://lesporteslogiques.net/wiki/tag/impression_3d?do=showtag&tag=impression_3D
https://lesporteslogiques.net/wiki/tag/animatronique?do=showtag&tag=animatronique
https://lesporteslogiques.net/wiki/tag/marionnette?do=showtag&tag=marionnette
https://lesporteslogiques.net/wiki/tag/raspberry-pi?do=showtag&tag=raspberry-pi
https://lesporteslogiques.net/wiki/tag/electronique?do=showtag&tag=electronique
https://lesporteslogiques.net/wiki/tag/em?do=showtag&tag=em
https://lesporteslogiques.net/wiki/projets/barbichette/start
https://bechele.de/
https://bechele.de/?page_id=70
https://www.thingiverse.com/thing:2863069
https://www.thingiverse.com/thing:2781756
https://www.thingiverse.com/thing:4058084
https://bechele.de/?page_id=73
https://bechele.de/?page_id=188
https://zappedmyself.com/animatronics/bechele2-info/
https://www.thingiverse.com/thing:4058084
https://www.youtube.com/watch?v=U1c4R2EB83A
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/yeux_animatroniques_pieces_lot_couleur.png
https://lesporteslogiques.net/wiki/ressource/impression3d#utilisation_de_cura
https://lesporteslogiques.net/wiki/outil/imprimante_3d_creality_ender_3/start
https://lesporteslogiques.net/wiki/openatelier/projet/tete_animatronique?rev=1686750243

e ot 4:2h50
e lot5:2h10
e |ot 6 : 3h05 (avec eyeball-for-iris, mais pas eyeball)

Un peu de casse au montage nécessite de nouveaux lots a imprimer

e |ot 7 : 1h00 (eyeball hinge et hinge frame, 1 de chaque)

Téte

Les fichiers pour la téte sont disponibles sur thingiverse, en revanche pas de vidéo cette fois pour aider au montage...

Impression

Durée d'impression

lot1:2h21
lot 2 : 1h10
lot 3:3h23
lot 4 : 1h55
lot 5:1h46
lot 6 : 1h39
lot 7 : 0h09 (oubli... connecting-levers)

Yeux 2

Ce sont les yeux animés qui vont avec la téte / fichiers fournis en stl sur thingiverse, réunis en 4 lots.

Impression

Durée d'impression
Sur la carte uSD : série de fichiers bechele_oeyes X.gcode

lot1:1h31
lot 2 : 0h30
lot 3:3h02
lot 4 : 2h12
lot 5:0h11

Durée d'impression avec les réglages qui compensent le probleme d'impression (série b)
Sur la carte uSD : série de fichiers bechele_oeyes Xb.gcode

https://lesporteslogiques.net/wiki/ 2/13

https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/tete_animatronique_pieces_lot_couleur.png
https://www.thingiverse.com/thing:2781756
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/2781756_eye_mechanics_parts.png

: 3h29
: 0h38
1 4h20
: 3h56
: 0h16

e o o o o
U B WN PP

Composants et visserie

‘"], m® (o

DIN912 DIN965 DIN7985 DIN915

e un guide bien utile pour se repérer dans le monde merveilleux de la visserie :
https://micro-modele.fr/img/cms/MICRO_VISSERIE/visserie_doc.pdf

Electronique

e Raspberry Pi 3 ou 4

module électronique driver 16 canaux pour servo, a base de PCA9685 (différents possibles, exemple : HW-170 ou
MotoPi)

yeux améliorés : 7 servomoteurs miniatures, on utilise des DMS-MG90-A de DFRobot, avec une amplitude de 270°
yeux d'origine : 5 servomoteurs

téte : 5 servomoteurs

alimentation 5V a x amperes : récupération d'une alim de PC

Quincaillerie

Test des servomoteurs avec arduino

Test de 4 servomoteurs avec du matériel grove et une alimentation de 550 mA (ancien chargeur de téléphone).
L'alimentation est largement sous-dimensionnée pour utiliser 5 servomoteurs. En lisant la datasheet du servomoteur, on voit
que son courant de décrochage (stall currrent) est de 800£30 mA a 4.8V et 110030 mA a 6V, on peut donc dimensionner
900mA pour alimenter chaque moteur (source)... Une alim de PC de récupération pourrait fournir largement ce qu'il faut.

test_servo.ino (cliquer pour afficher le code)

test_servo.ino

/* Test servomoteurs avec seeeduino lotus + module grove PCA9685 16-Chan I2C PWM driver

arduino 1.8.5 @ Kirin, pierre@lesporteslogiques.net / 23 nov. 2022
+ lib. Seeed PCA9685 library, https://github.com/Seeed-Studio/Seeed PCA9685

Grove PCA9685 : https://wiki.seeedstudio.com/Grove-16-Channel PWM Driver-PCA9685
Servo MG90 a 270° (DMS-MG90-A) https://www.dfrobot.com/product-1970.html
*/

#include "PCA9685.h"
#include <Wire.h>

ServoDriver servo

void setup
Wire.begin // join I2C bus
Serial.begin (9600
servo.init(0Ox7f

void loop
// Test avec 4 servos
inti=1;,1<5;1
servo.setAngle(i, 0
delay (1000
servo.setAngle(i, 90
delay (1000

Le sketch ci-dessous est utile pour mettre les servo en position centrale avant de les inclure dans le montage :

https://lesporteslogiques.net/wiki/ 3/13

https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/vis.png
https://micro-modele.fr/img/cms/MICRO_VISSERIE/visserie_doc.pdf
https://www.joom.com/en/products/5cd4d3318b2c370101468089
https://www.joy-it.net/en/products/RB-Moto3
https://www.dfrobot.com/product-1970.html
https://www.dfrobot.com/product-1970.html
https://forum.arduino.cc/t/how-much-power-supply-do-i-need-for-controlling-5-sg90-9g-microservo/627666
https://lesporteslogiques.net/wiki/_export/code/openatelier/projet/tete_animatronique?codeblock=0

raz_servo.ino (cliquer pour afficher le code)

raz_servo.ino

/* Test / Remise a zéro de servomoteurs

servomoteurs avec seeeduino lotus + module grove PCA9685 16-Chan I2C PWM driver

pour programmer la lotus, choisir arduino uno dans 1'IDE

arduino 1.8.5 @ Kirin, pierre@lesporteslogiques.net / 7 déc. 2022

+ lib. Seeed PCA9685 library, https://github.com/Seeed-Studio/Seeed PCA9685

Grove PCA9685 : https://wiki.seeedstudio.com/Grove-16-Channel PWM Driver-PCA9685

Servo MG90 a 270° (DMS-MG90-A) https://www.dfrobot.com/product-1970.html

On peut relancer la procédure en faisant un reset de la carte
*/

#include "PCA9685.h"
#include <Wire.h>

ServoDriver servo
boolean centerdone = false

void setup
Wire.begin // join I2C bus
Serial.begin (9600
servo.init(0x7f

void loop
// Remettre les servos au centre
centerdone
inti=1;1i<6; 1
servo.setAngle(i, 45
delay (2000
servo.setAngle(i, 135
delay (3000
servo.setAngle(i, 90
delay (2000

centerdone = true

delay (100

A noter : les servos ont une amplitude de 270°, la fonction servo.write() d'arduino prend en argument des valeurs entre 0 et
180. Dans le fichier Servo.h de la librairie servo, on peut trouver les valeurs extremes utilisées (ci-dessous), dont dans notre
cas 0 correspond a -135° et 180 correspond a +135°... (Ce modéle de servo fonctionne entre 500 et 2500, mais je garde les

valeurs prédéfinies, les servos n'auront pas besoin de parcourir toute leur amplitude)

#define MIN_PULSE WIDTH 544 // the shortest pulse sent to a servo
#define MAX PULSE WIDTH 2400 // the longest pulse sent to a servo
#define DEFAULT PULSE _WIDTH 1500 // default pulse width when servo is attached

Joystick
Pour enregistrer les mouvements des servos
Possible d'utiliser un de ces modéles en ajoutant les boutons

e https://www.thingiverse.com/thing:3250017
e https://www.thingiverse.com/thing:1276108
e https://www.thingiverse.com/thing:700346

On utilise une boite de dérivation électrique avec un joystick analogique (voir photo en bas de page)

https://lesporteslogiques.net/wiki/

4/13

https://lesporteslogiques.net/wiki/_export/code/openatelier/projet/tete_animatronique?codeblock=1
https://www.arduino.cc/reference/en/libraries/servo/write/
https://github.com/arduino-libraries/Servo/blob/master/src/Servo.h
https://www.thingiverse.com/thing:3250017
https://www.thingiverse.com/thing:1276108
https://www.thingiverse.com/thing:700346

BECHELED O1STCK NRNGDGRA

s pedmpel ottt i
ik e T
Aty)
futm 1 i1
WRE G
T
z -
e 1 8
o[-
E (1] NE
5 mk <
& | N
5 Ju P 76, i
fulen ! (- Tk
W
L
KanLitfg
L1}
M
WYy
o b do ¢
Conicin o gl PGP0
AP0 . P
——-_ -

Schéma de PacketBob

code_arduino_joystick.ino (cliquer pour afficher le code)

code_arduino_joystick.ino

// Bechele2 Joystick Code V2.1 Sept 2021

// Arduino code for the joystick used for programming servo movements in Bechele2 animatronic software:

// http://bechele.de/pages/english/72-0.html

// Based on original code written by Rolf Jethon:
// http://bechele.de/pages/english/77-0.html

// For more info on building this joystck:
// https://zappedmyself.com/animatronics/bechele2-info/

// This code sends the Joystick X & Y values and the button status to the Raspberry Pi
// Each time the number 4 (ASCII value 52) is received from Raspberry Pi the data is sent

// Can run on any Arduino variant (I used a NANO clone)

// - Cleaned up comments and naming

// - Added code internal pullups to simplify wiring

// - Changed the joystick averaging code to get better range of ADC values

//***PIN ASSIGNMENTS***//

#define Y _PIN AO // Analog input pin that the X axis pot is connected to
#define X PIN Al // Analog input pin that the Y axis pot is connected to
#define BUTTON1 PIN 2 // Digital input pin the START button is connected to

#define BUTTON2_PIN 3 // Digital input pin the STOP button is connected to

//***CUSTOMIZE VALUES***//
#define BAUD RATE 19200 // Baud rate for serial port
#define ALPHA VALUE 0.9 // Averaging factor (0.1 - 1.0) higher value =

//***VARIABLE DECLARATION***//

int xAxisValue = 496; // set X value to middle of possible range
int yAxisValue = 496; // set Y value to middle of possible range
int xAxisMax = 1022;

int yAxisMax = 1022;

int xVal;

int yval;

int inByte = 0; // incoming serial byte
float alphaFactor = ALPHA_VALUE; // set to defined value

faster averaging

https://lesporteslogiques.net/wiki/

5/13

https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/bechele2-joystick.jpg
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/bechele2-joystick.jpg
https://zappedmyself.com/animatronics/bechele2-info/
https://lesporteslogiques.net/wiki/_export/code/openatelier/projet/tete_animatronique?codeblock=3

//***MICROCONTROLLER CONFIGURATION***//
void setup
pinMode (BUTTON1_PIN, INPUT_PULLUP
pinMode (BUTTON2_PIN, INPUT PULLUP
Serial.begin(BAUD_RATE // Setup serial port speed

//***START OF MAIN LOOP***//

void loop
xAxisValue = alphaFactor * analogRead(X_PIN 1 - alphaFactor xAxisValue // Get Xaxis value and average it
delay (3
yAxisValue = alphaFactor * analogRead(Y PIN 1 - alphaFactor yAxisValue // Get Yaxis value and average it
int buttonlState = digitalRead(BUTTON1_PIN // Get Button 1 state
int button2State = digitalRead (BUTTON2_ PIN // Get Button 2 state

xVal = xAxisMax - xAxisValue
yVal = yAxisMax - yAxisValue

// Test

/*

Serial.print(xVal);
Serial.print(" ");
Serial.print(yVal);
Serial.print(" ");
Serial.print(buttonlState);
Serial.print(" ");
Serial.println(button2State);

*/

// Test 2 (graphique)
Serial.print(xVal
Serial.print(",
Serial.print(yVal

Serial.print(","
Serial.print(buttonlState * 1000
Serial.print(","
Serial.println(button2State 1000

delay (50

/*
if (Serial.available() > 0) { // Check to see if serial data request has been received
inByte = Serial.read(); // Store serial data
if (inByte == 52) { // Send data values if ASCII '4' is received

Serial.print(xAxisValue);

Serial.print(" ");

Serial.print(yAxisValue);

Serial.print(" ");

Serial.print(buttonlState);

Serial.print(" ");

Serial.println(button2State);
}
inByte = 0; // Clear inByte value for next command
»/

Utilisation du module MotoPi RB-Moto3

Module pour Raspberry Pi : documentation / lien fabricant

En fait, je ne sais pas si ga peut marcher avec le montage, ce module fonctionne avec une librairie python, se connecte en
12C alors que le code du projet «Bechele» est en perl...

Arduino + PCA9685

Un module multiplexeur a base de PCA9685 permet de commander jusqu'a 16 servomoteurs, on peut chainer plusieurs

https://lesporteslogiques.net/wiki/ 6/13

https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/rb-moto3.jpg
https://lesporteslogiques.net/materiel/__MODULES/servo_driver_16channels_joy-it_motopi_RB-Moto3/
https://www.joy-it.net/en/products/RB-Moto3

module pour commander encore plus de servomoteurs. La communication avec arduino se fait en 12C.

Le condensateur électrochimique du module PCA9685 est adapté au nombre de servomoteurs utilisés : compter 100 pF par
moteur

] iy

. N
Photo Adafruit

Code d'exemple avec la lib. Adafruit PWM Servo:

arduino_servo_pca9685.ino (cliquer pour afficher le code)

arduino_servo_pca9685.ino
/* Test servo

arduino 1.8.5 @ Kirin, pierre@lesporteslogiques.net / 27 mars 2023
+ lib. Adafruit PWM Servo https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library

Réglages de la carte PCA9685
Testé avec Grove Beginner Kit (vu Comme Arduino Genuino/Uno)

Sans réglage, ¢a fonctionne corectement a l'adresse I2C : 0x40
*/

#include <Wire.h>
#include <Adafruit_PWMServoDriver.h>

// called this way, it uses the default address 0x40
Adafruit_PWMServoDriver pwm = Adafruit PWMServoDriver();

// Depending on your servo make, the pulse width min and max may vary, you

// want these to be as small/large as possible without hitting the hard stop

// for max range. You'll have to tweak them as necessary to match the servos you
// have!

https://lesporteslogiques.net/wiki/ 7/13

https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/arduino_servo_pca9685.jpg
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/arduino_servo_pca9685.jpg
https://learn.adafruit.com/16-channel-pwm-servo-driver/hooking-it-up
https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library
https://lesporteslogiques.net/wiki/_export/code/openatelier/projet/tete_animatronique?codeblock=4

#define SERVOMIN 150 // This is the 'minimum' pulse length count (out of 4096)

#define SERVOMAX 600 // This is the 'maximum' pulse length count (out of 4096)

#define USMIN 600 // This is the rounded 'minimum' microsecond length based on the minimum pulse of 150
#define USMAX 2400 // This is the rounded 'maximum' microsecond length based on the maximum pulse of 600
#define SERVO FREQ 50 // Analog servos run at ~50 Hz updates

// our servo # counter
uint8 t servonum = 0;
uint8 t servonum_max = 1;

void setup() {
Serial.begin(9600);
Serial.println("8 channel Servo test!");

pwm.begin();
/*
* In theory the internal oscillator (clock) is 25MHz but it really isn't
* that precise. You can 'calibrate' this by tweaking this number until
* you get the PWM update frequency you're expecting!
* The int.osc. for the PCA9685 chip is a range between about 23-27MHz and
* is used for calculating things like writeMicroseconds()
* Analog servos run at ~50 Hz updates, It is importaint to use an
* oscilloscope in setting the int.osc frequency for the I2C PCA9685 chip.
* 1) Attach the oscilloscope to one of the PWM signal pins and ground on
* the I2C PCA9685 chip you are setting the value for
* 2) Adjust setOscillatorFrequency() until the PWM update frequency is the
* expected value (50Hz for most ESCs)
* Setting the value here is specific to each individual I2C PCA9685 chip and
* affects the calculations for the PWM update frequency.
*

Failure to correctly set the int.osc value will cause unexpected PWM results
*/

pwm.setOscillatorFrequency(27000000);

pwm.setPWMFreq(SERVO_FREQ); // Analog servos run at ~50 Hz updates

delay(10);
}

// You can use this function if you'd like to set the pulse length in seconds
// e.g. setServoPulse(0, 0.001) is a ~1 millisecond pulse width. It's not precise!
void setServoPulse(uint8 t n, double pulse) {

double pulselength;

pulselength = 1000000; // 1,000,000 us per second
pulselength /= SERVO_FREQ; // Analog servos run at ~60 Hz updates
Serial.print(pulselength); Serial.println(" us per period");
pulselength /= 4096; // 12 bits of resolution
Serial.print(pulselength); Serial.println(" us per bit");
pulse *= 1000000; // convert input seconds to us
pulse /= pulselength;
Serial.println(pulse);
pwm.setPWM(n, 0, pulse);

}

void loop() {
// Drive each servo one at a time using setPWM()
Serial.println(servonum);
for (uintl6_t pulselen = SERVOMIN; pulselen < SERVOMAX; pulselen++) {
pwm.setPWM(servonum, 0, pulselen);
}

delay(500);

for (uintl6 t pulselen = SERVOMAX; pulselen > SERVOMIN; pulselen--) {
pwm.setPWM(servonum, 0, pulselen);

}

delay(500);

// Drive each servo one at a time using writeMicroseconds(), it's not precise due to calculation rounding!
// The writeMicroseconds() function is used to mimic the Arduino Servo library writeMicroseconds() behavior
for (uintl6 t microsec = USMIN; microsec < USMAX; microsec++) {

pwm.writeMicroseconds(servonum, microsec);

}

delay (500);

for (uintl6_t microsec = USMAX; microsec > USMIN; microsec--) {
pwm.writeMicroseconds(servonum, microsec);

}

delay(500);

servonum++;
if (servonum > servonum_max) servonum = 0; // Testing the first 8 servo channels

Rpi + Python + PCA9685
Multiplexeur PCA9685

https://lesporteslogiques.net/wiki/ 8/13

5vwallsupply

Source du schéma : https://learn.adafruit.com/adafruit-16-channel-servo-driver-with-raspberry-pi/hooking-it-up

Circuit complet

Winng fo puppet head

t
1
i
Lo 1
TR
T i 4 [‘%
4 [1
] :
j !
b i |-}
i ;
=
4 i
¥ [
u [
El i)
m m
L f
It it

i FilsfvoAnckon Send s nchin

Fourhsiro fnclin

ET
o s gl pover gl for o s ply o s st el e o RGP

— B
Schéma de Rolf Jethon

Communication 12C vers les servomoteurs
En utilisant Adafruit Servokit Library : https://docs.circuitpython.org/projects/servokit/en/latest/

e https://github.com/adafruit/Adafruit_CircuitPython_Bundle
e https://github.com/adafruit/Adafruit_CircuitPython_ServoKit

Installation

sudo pip3 install adafruit-circuitpython-servokit
python3.7 -m pip install adafruit-circuitpython-servokit

https://lesporteslogiques.net/wiki/ 9/13

https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/16-channel-pwm-controller-pca9685-module-overview.jpg
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/adafruit_raspi_pca9685_i2c_with_servo.png
https://learn.adafruit.com/adafruit-16-channel-servo-driver-with-raspberry-pi/hooking-it-up
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/barbichette_schema_general_bechele_proto1.png
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/barbichette_schema_general_bechele_proto1.png
https://bechele.de/
https://docs.circuitpython.org/projects/servokit/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_ServoKit

(Dans I'IDE geany, penser a changer les chemins vers |'exécutable de python, menu “construire” > “définir les outils de

construction”)

test_servo_pca9685.py (cliquer pour afficher le code)

test_servo_pca9685.py

time
adafruit_servokit ServoKit

Set channels to the number of servo channels on your kit
8 for FeatherWing, 16 for Shield/HAT/Bonnet.
kit = ServoKit(channels=8

kit.servo[0].angle 180
#kit.continuous _servo[l].throttle = 1
time.sleep(1

#kit.continuous servo[1l].throttle = -1
time.sleep(1

kit.servo[0].angle 0
#kit.continuous servo[l].throttle = 0

Communication série avec le joystick arduino
Attention aux niveaux de tension si connexion directe aux broches GPIO 3V3 != 5V)

Dans le joystick, un arduino envoie des informations sur le port USB-série vers le raspberry pi, a 19200 bps
On peut vérifier que le port série est bien reconnu avec lsusb

Et utiliser Ls /dev/tty* pour voir si le port utilisable Penser aussi a ajouter I'utilisateur au groupe dialout :

sudo adduser pi dialout
python3 -m pip install pyserial # installer les bibliotheques

Ensuite ce sketch arduino :

python_serial_read.py (cliquer pour afficher le code)

python_serial_read.py
#!/usr/bin/env python3

source : https://roboticsbackend.com/raspberry-pi-arduino-serial-communication/
arduino relié a /dev/ttyUSBO (pour trouver le port : ls /dev/tty*)
baud rate a 19200, correspond a celui défini dans arduino
timeout : durée allouée a la lecture série
readline() : lit jusqu'au caractére de fin de ligne
decode('utf- 8') : transforme les bytes récues dans le type souhaité
rstrip() : retire les caractéres de fin de ligne
serial
__name___ main
ser serial.Serial('/dev/ttyUSBO', 19200, timeout=1
vider le buffer série en début de communication
ser.reset_input_buffer
True:
y a t'il des données en attente ?
ser.in waiting 0:
line ser.readline().decode('utf-8").rstrip
line

HoH R K B R R

Voir aussi : https://www.aranacorp.com/fr/communication-serie-entre-raspberry-pi-et-arduino/
Pour adapter les niveaux logiques, voir :
e https://www.okdo.com/project/level-shifting/?ok_ts=1680009581943
e https://raspberrypi.stackexchange.com/questions/77176/raspberry-pi-gpio-input-voltage-limit

Alimentation

A base d'une alimentation d'ordinateur ATX a 24 broches : https://en.wikipedia.org/wiki/ATX#Power _supply

https://lesporteslogiques.net/wiki/

10/13

https://lesporteslogiques.net/wiki/_export/code/openatelier/projet/tete_animatronique?codeblock=5
https://lesporteslogiques.net/wiki/_export/code/openatelier/projet/tete_animatronique?codeblock=6
https://www.aranacorp.com/fr/communication-serie-entre-raspberry-pi-et-arduino/
https://www.okdo.com/project/level-shifting/?ok_ts=1680009581943
https://raspberrypi.stackexchange.com/questions/77176/raspberry-pi-gpio-input-voltage-limit
https://en.wikipedia.org/wiki/ATX#Power_supply

Montage

Pour le montage du mécanisme des yeux, se reférer a cette vidéo : https://www.youtube.com/watch?v=U1c4R2EB83A

Il est nécessaire de percer et tarauder les piéces avant le montage :

Impression résine

On imprime des pieces en résine avec la anycubic photon mono 4K (Ces pieces sont trop fragiles en impression 3D PLA).
Deux plateaux sont préparés pour I'impression.

Et un petit dernier. (nb: ca aurait été plus malin de grouper les piéces par catégorie sur chague plateau)

Installation du raspberry pi

Le projet est fourni avec une image pour raspberry pi 3 mais vu que c'est difficile de se procurer ce genre de carte en ce
moment, on part sur une installation manuelle sur un raspberry pi 4

https://lesporteslogiques.net/wiki/ 11/13

https://www.youtube.com/watch?v=U1c4R2EB83A
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/yeux_plan_de_percements.png
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/yeux_plan_de_taraudage.png
https://lesporteslogiques.net/wiki/outil/imprimante_3d_anycubic_photon_mono_4k/start
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/plateau_1.png
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/plateau_2.png
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/plateau_3.png
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/plateau_4.png
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/plateau_5.png

Version du Pi 4 : Raspbian 10 buster (Isb_release -a)

téléchargement du fichier https://bechele.de/wp-content/uploads/2022/07/bechele2.tar.gz (depuis
https://bechele.de/?page_id=80)

Installation des bibliotheques nécessaires

sudo apt update

sudo apt install cpanminus

sudo apt install wiringpi

sudo apt install alsa-utils

sudo apt install mpgl23

sudo apt install i2c-tools

sudo apt install perl5 # déja installé

sudo apt install perl-device-serialport # ne fonctionne pas
sudo apt install libdevice-serialport-perl

sudo cpanm strict

sudo cpanm Device::SerialPort

sudo apt install ncurses-base ncurses-bin

sudo apt install libncurses5-dev libncursesw5 libncursesw5-dev
sudo cpanm Curses::UI

sudo cpanm WiringPi::API

sudo cpanm File::Find::Rule

sudo cpanm Device::PWMGenerator: :PCA9685

sudo cpanm Audio::Play::MPG123

sudo cpanm Time::HR

Installation des scripts

les fichiers téléchargés sont dans le dossier /nome/pi/bechele, on les copie dans les bons dossiers de /usr avec sudo.

sudo cp /home/pi/bechele/usr/lib/systemd/system/runlive.service /usr/lib/systemd/system/
sudo cp -R /home/pi/bechele/usr/local/bin/* /usr/local/bin/

Les fichiers a copier dans /home sont copiés manuellement.
Configuration du Raspberry Pi

Il faut activer la communication 12C, pour cela

sudo raspi-config
choisir dans le menu : interface, puis I2C

Test pour commander les moteurs en python

Une fois le PCA9685 relié a 2 moteurs et au rpi, le rpi configuré pour communiquer en 12C, un premier test en python

Journal

Journal partiel, pour poster quelques photos sur des étapes importantes

7 décembre 2022 : pour le software : A. teste les capacités du client Iéger pour voir s'il est capable de traiter de I'image
vidéo en CV, plutét oui! L'install. d'OpenFrameworks + CV n'est pas triviale mais a la fin ¢a fonctionne plutét bien... pour le
hardware : pas mal de petite quincaillerie pour laguelle il mangue toujours une piéce, aujourd'hui c'était de tige filetée de
3mm, les moteurs sont installés, le prototype prend forme, ca mérite une photo.

£

4 janvier 2023 : en continuant le montage, je casse une piéce fragile, a réimprimer donc... c'est compliqué de trouver des
vis DIN915 mais on ne peut pas vraiment s'en passer (trouvées finalement sur la boutique en ligne d'un vendeur du
marketplace d'amazon).

https://lesporteslogiques.net/wiki/ 12/13

https://bechele.de/wp-content/uploads/2022/07/bechele2.tar.gz
https://bechele.de/?page_id=80
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/20221207_proto_en_construction.jpg

18 janvier 2023 : la reconnaissance de visage fonctionne bien sur le client Iéger qu'on envisageait! A. a écrit du code pour
lisser les mouvements et différencier différents types de sourires. Montage du joystick pour piloter les yeux et enregistrer les
séquences.

2 mars 2023 : TODO photos des prototypes d'animatronique, I'impression 3D en PLA est trop fragile, il va falloir penser a
tout refaire en résine...

Ressources

Sur I'animatronique : https://zappedmyself.com/animatronics/animatronic-projects/
Une autre paire d'yeux : https://www.instructables.com/DIY-Compact-3D-Printed-Animatronic-Eye-Mechanism/

Article extrait de : https://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : https://lesporteslogiques.net/wiki/openatelier/projet/tete_animatronique?rev=1686750243
Article mis a jour: 2023/06/14 15:44

https://lesporteslogiques.net/wiki/ 13/13

https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/barbichette_montage_joystick.jpg
https://lesporteslogiques.net/wiki/_media/projets/barbichette_application.jpg
https://lesporteslogiques.net/wiki/_media/openatelier/projet/tete_animatronique/20230302_barbichette.jpg
https://zappedmyself.com/animatronics/animatronic-projects/
https://www.instructables.com/DIY-Compact-3D-Printed-Animatronic-Eye-Mechanism/
https://lesporteslogiques.net/wiki/
https://lesporteslogiques.net/wiki/openatelier/projet/tete_animatronique?rev=1686750243

	🆕 Tête de marionnette animatronique
	Réglages particuliers
	Yeux
	Impression

	Tête
	Impression

	Yeux 2
	Impression

	Composants et visserie
	Test des servomoteurs avec arduino
	Joystick
	Utilisation du module MotoPi RB-Moto3
	Arduino + PCA9685
	Rpi + Python + PCA9685
	Multiplexeur PCA9685
	Montage
	Circuit complet
	Communication I2C vers les servomoteurs
	Communication série avec le joystick arduino

	Alimentation
	Montage
	Impression résine
	Installation du raspberry pi
	Test pour commander les moteurs en python

	Journal
	Ressources

