WIKI Les Portes Logiques
Adresse de l'article : https://lesporteslogiques.net/wiki/projets/barbichette/start
Article mis a jour le : 2025/11/18 18:56 / Imprimé le 2026/02/18 19:36

Barbichette

(en cours)

Installation interactive pour rire et causer des algorithmes de reconnaissance faciale, de reconnaissance vocale et de
synthése vocale

Prototype vO / juin 2023

Mise en route de l'installation

Tout brancher, relier I'ordi et le rpi au réseau local
Démarrer le raspberry pi

e Chercher I'adresse IP locale hostname -1I dans un terminal et la noter
e Démarrer Programmation/Geany
e Lancer le script osc_reception_tracking_visage.py dans le terminal de Geany

Démarrer I'ordi

e Régler les paramétres webcam : guvcview dans un terminal
o - changer au moins la fréquence de rafraichissement sur 50Hz (si éclairage électrique)
Fermer le terminal
Vérifier qu'il n'y pas de terminal ouvert (cela perturberait I'étape suivante)
Lancer gt creator : fichier - projet récent - dlibFaceTrackerTEST.qvs
Cliquer sur la grosse fléche verte ou utiliser le raccourci clavier ctrl+r
o Choisir la webcam a utiliser -» 0 si 1 seule webcam
o Choisir le périphérique audio a utiliser - regarder dans la liste mais slirement 6 ou 8
o Entrer I'adresse réseau du rpi

Fonctionnement de l'application

Raccourcis clavier

. Ejfullscreen
I| indicateur de performance et valeurs des différents types de sourire.
. g fait apparaftre la souris et plusieurs options
o radius : largeur des landmarks
o smile threshold : seuil de détection d'un sourire
o minimum head size : défini la taille minimum pour gu’un visage soit capté.
o detection method :
= 1 capte le plus grand visage
= 2 capte le visage le plus au centre
o debug mode : fait apparaitre I'image de la webcam en arriére plan

Construction d'un automate d'aprés le projet de Rolf Jethon, voir
https://lesporteslogiques.net/wiki/openatelier/projet/tete_animatronique
L'automate est commandé par un raspberry pi et actionné par des servomoteurs

Installation d'un ordi pour la reconnaissance faciale

Installation de I'ensemble de logiciels nécessaires sur un client léger (CL28 : i3-4170T @ 3.2 GHz x 2, 4GB RAM, Debian 11
bullseye)

https://lesporteslogiques.net/wiki/ 1/14

https://lesporteslogiques.net/wiki/openatelier/projet/tete_animatronique
https://lesporteslogiques.net/wiki/projets/barbichette/start

Installation de Qt Creator

installation de QTCreator par apt (cf. https://openframeworks.cc/setup/qtcreator/)

sudo apt install qtcreator #version : Qt Creator 4.14.1 based on Qt 5.15.2
sudo apt install gbs

Installation openframeworks

téléchargement du paquet OF v.0.11.2 https://openframeworks.cc/download/
installation en suivant https://openframeworks.cc/setup/linux-install/

Ci-dessous, OF est a remplacer par le nom du répertoire choisi pour les fichiers d'openframeworks

installer les bibliotheques dépendances

cd OF/scripts/linux/ubuntu
sudo ./install_dependencies.sh

compiler openframeworks

cd OF/scripts/linux
./compileOF.sh -j2 #2 = nombre de cores

ensuite, test d'un exemple avec make

cd OF/examples/graphics/polygonExample
make
make run

compiler PG (le Project Generator pour Qt Creator)

cd OF/scripts/linux
./compilePG.sh

J'installe aussi le Project Generator en ligne de commande
projectGenerator --help

installer QT Creator plugin for openframeworks

cd OF/scripts/qtcreator/
./install_template.sh

J'essaie d'ouvrir le projet polygonExample dans Qt Creator
e fichier / ouvrir un projet
e compiler / compiler le projet
e compiler / exécuter (CTRL-R)

- ca fonctionne

Installation caméra

Premiers test avec une caméra PS3 eye

sudo apt install v4l-utils
sudo apt install guvcview
sudo apt install webcamoid

(?) La caméra plante trés vite avec guvcview ou webcamoid, et n'est plus visible par Lsusb

Installation d'addons dans openframeworks cf.
https://openframeworks.cc/learning/01_basics/how_to_add_addon_to_project/

e https://github.com/kylemcdonald/ofxCv/tags
e (A INSTALLER) https://github.com/Halfdan)/ofxFaceTracker2

Mais un premier exemple d'ofxCv ne compile pas ...

https://lesporteslogiques.net/wiki/

2/14

https://openframeworks.cc/setup/qtcreator/
https://openframeworks.cc/download/
https://openframeworks.cc/setup/linux-install/
https://openframeworks.cc/learning/01_basics/how_to_add_addon_to_project/
https://github.com/kylemcdonald/ofxCv/tags
https://github.com/HalfdanJ/ofxFaceTracker2

:(a suivre ...

Préparation d'un prototype de code

Info matériel capture vidéo

On utilise la webcam de la playstation 3, le “Playstation eye”, avec une résolution de 640x480 pixels a 60 Hz. Il est
également possible de sélectionner une résolution de 320x240 px a 120 Hz.

Créer un projet avec le project generator

Pour créer un projet et y rajouter des addons, il est plus simple d'utiliser le project generator inclus avec openframeworks :
openframeworks v0.11.2/projectGenerator-linux64/projectGenerator

BUG : le project generator ne peut pas retirer un add-on déja présent dans un projet (du moins sur cette version).

Une fois le projet créé dans le dossier openframeworks v0.11.2/apps/myApps, ouvrir le fichier .gbs dans gtcreator et
cliquer sur Configure Project.
Détection de visage

Test avec la méthode Haar Cascade :

2 solutions :

e avec I'addon ofxCvHaarFinder : inclus dans les addons de base d’openframeworks.

e avec I'addon ofxCv : télécharger la derniere version de ofxCv master branch
(https://github.com/kylemcdonald/ofxCv/) dans le dossier addons, dezipper et renommer ofxCv si le nom est
différent.

Pour utiliser la méthode Haar Cascade, il faut rajouter un fichier de modéle pré-entrainé dans le dossier data de notre
application (par exemple haarcascade_frontalface_default.xml) puis créer un projet OF avec ofxCv en addon et faire un test
avec I'exemple « exemple-face » d’ofxCv.

Observations : performance et stabilité insuffisantes pour le projet barbichette mais simple a mettre en place.

Test avec la méthode des face landmarks

Commencer par télécharger la derniere version de ofxCv master branch qui est nécessaire au fonctionnement des addons
que |'on va rajouter par la suite.

Premier test avec I’addon ofxFaceTracker2
Le repo officiel de I'addon fonctionne, par défaut, uniquement sur les os android, osx et windows 64 bit.
étape 1

Installer I'intel® oneAPI Math Kernel Library si I'ordinateur utilisé n’a pas de carte graphique dédiée et possede un
processeur intel :

« https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html?operatingsystem=linux » ou
sinon la commande :

sudo pacman -S intel-mkl

Si I'ordinateur est équipé d’'une carte graphique nvidia CUDA, installer ca a la place de I'intel mkl:
https://developer.nvidia.com/cudnn et https://developer.nvidia.com/cuda-zone

https://lesporteslogiques.net/wiki/ 3/14

https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/kylemcdonald/ofxCv/
https://github.com/HalfdanJ/ofxFaceTracker2

étape 2

Télécharger ofxDlib et ofxFaceTracker2 dans le dossier addons.

:warning: la bibliotheque ofxFaceTracker2 que I'on utilise ici n’est pas I'addon “officiel” mais la fork de bakercp qui
fonctionne avec les distrib UBUNTU : « https://github.com/bakercp/ofxFaceTracker2 »

Attention : utiliser la commande GIT CLONE pour récupérer ofxD1ib sinon le script shell de I'étape suivante ne
fonctionnera pas (besoin du .git)

cd of v0.10.1 linuxarmv6l release/addons
git clone https://github.com/bakercp/ofxDlib.git

Une fois les deux addons téléchargés et décompressés, lancer le script bootstrap.sh dans le dossier ofxDlib/scripts:

cd scripts
./bootstrap.sh

étape 3

Dans le fichier ofxDlib/addon config.mk: - Sion utilise la intel mkl : décommenter la ligne 56 :
ADDON_INCLUDES += /opt/intel/mkl/include
e Sion utilise une carte graphique nvidia sous CUDA décommenter la ligne 53 :

ADDON_LDFLAGS += -L/usr/local/cuda/1ib64 -lcuda -lcudart -lcudnn -lcublas -lcurand -lcusolver

Commenter les lignes 740 a 743 du fichier
openframeworks v0.11.2/addons/ofxDlib/libs/dlib/include/dlib/matrix/kiss fft.h a cause d'un conflit
entre la lib ofxDlib et une lib openframeworks :

// inline int kiss fftr next fast size real(int n)
/7 A

// return kiss fft next fast size((n+l)>>1) << 1;
/7 }

étape 4

Avec le project manager, création d’un nouveau un projet avec les addons ofxDlib, ofxFaceTracker2, ofxCv et
ofx0penCv. Rajout du fichier shape_predictor_68_face_landmarks.dat dans le dossier bin/data du projet.

Aide pour les systémes sous ArchLinux : https://roosnaflak.com/tech-and-research/set-up-ofxfacetracker2-on-arch-linux/

étape 5 - détection de sourire

Télécharger I'addon ofxBiquadFilter dans le dossier addon de OF. Le rajouter au projet avec le project generator. Copier
les 4 fichiers de openframeworks v0.11.2/addons/ofxFaceTracker2/example-svm/bin/data vers le dossier data
du projet. Reprendre I'exemple inclus avec ofxFaceTracker2 exemple-svm qui devrait fonctionner.

Observations : bonne performance, Iéger probleme de stabilité (I'image sautille), installation un peu compliquée mais
nous allons retenir cette méthode.

version d’'OpenGl

Si besoin, pour connaitre la version d’OpenGL qu'utilise notre machine

cd openframeworks_v0.11.2/examples/gl/glInfoExample
make
make run

Pour le client 1éger du projet barbichette on obtient ce résultat :

https://lesporteslogiques.net/wiki/ 4/14

https://github.com/bakercp/ofxDlib
https://github.com/bakercp/ofxFaceTracker2
http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2
https://github.com/dzlonline/ofxBiquadFilter

version=3.0 Mesa 20.3.5
vendor=Intel Open Source Technology Center
renderer=Mesa DRI Intel(R) HD Graphics 4400 (HSW GT2)

On peut préciser la version opengl du projet dans main. cpp pour étre sir de la compatibilité avec le matériel utilisé :

ofGLFWWindowSettings settings;
settings.setGLVersion(3, ;
settings.setSize(webcamW, webcamH);
settings.windowMode = OF WINDOW;
ofCreateWindow(settings);

ofRunApp (new ofApp ;

Développement du logiciel de détection de visage pour le projet barbichette

Les landmarks

® 68 repéres (points avec un index) qui vont définir la structure / position d’un visage. L'index des points sera toujours
le méme peu importe le visage (ex. les points 0 a 16 représentent la machoire).

o a partir de I'exemple-svm de ofxFaceTracker, mettre en place une détection du sourire d'un des visages détectés
selon les parameétres small smile (sourire Iéger), big smile (sourire extasié, bouche ouverte), O smile (bouche en
forme de O) et neutral smile (pas de sourire).

Observations : fonctionne bien sur un visage orienté parfaitement vers la webcam. Les points trembles et il y a parfois
des sauts dans la captation avec la détection du visage qui cesse pendant quelques images. Captation moins précise sur
un visage légérement tourné. Dans de mauvaises conditions d'éclairage, la captation ne fonctionne pas bien. Un peu le
bazar quand plusieurs utilisateurs.

Captation des visages

e Pour que les landmarks sautillent moins, j'utilise un filtre passe bas pour lisser les positions par rapport aux
précédentes.

smooth = 0.8; // btw 0.0 and 0.999999, closer to 1.0 = smoother
head[i] = head[i] * smooth + tracker.getInstances()[index].getLandmarks().getImagePoints()[i] * (1.0 - smooth);

L'addon propose de base deux systemes d’identification des visages. Premierement un systéme de labellisation des visages.
Chaque nouveau visage détecté possede un nouveau label et si un visage disparait et réapparait sous x secondes dans la
méme zone, il garde le méme label. Et deuxiemement le tracker créé une liste ol chaque index représente les landmarks
d’'un visage capté. Plus un visage est capté depuis longtemps sans interruption, plus I'index de la liste contenant la position
de ses landmarks a une valeur proche de 0. Probléme : quand on perd et recapte un visage, le label du visage reste le méme
mais son index dans la liste des landmarks captés change,. Ce qui peut poser probléme quand on veut savoir quel label
correspond a quelle liste de landmark.

e On peut définir la taille de I'image qui va étre analysée pour la détection des visages avec la fonction
tracker.setFaceDetectorImageSize. Plus la valeur est grande plus le calcul sera long et précis. La valeur MAX
est la résolution de la webcam qui est de 640 x 480 px dans notre cas. Avec cette valeur le background thread est
environ a 15 fps. Apres plusieurs tests j'ai choisi la valeur 480 x 360 qui tourne en 30 fps sur le background thread.

tracker.setup();
tracker.setFaceDetectorImageSize *

Choix de restreindre la détection a un seul visage pour le projet. Pour cela :

1. Détecter si la bounding box d'un visage est suffisamment grande pour étre capté. C.-a-d. détecter si un visage est
suffisamment proche de la webcam, dans le but de supprimer les visages parasites des spectateurs qui se
trouveraient dans le champs de vision de la webcam mais qui serait trop loin pour en étre un utilisateur.

2. Sélectionner le visage principal si plusieurs sont détectés. Deux méthodes misent en place :

o Sélectionner le visage avec la plus grande bounding box - le visage qui occupe la plus grande surface (aire)
sur I'écran et qui est donc normalement le visage le plus proche de la webcam (sauf cas particulier comme
les enfants ou les petites tétes).

o Sélectionner le visage le plus au centre de la caméra.

void ofApp::findMainFaceID(int method
// find the main face ID and store it in the mainFaceID variable
isCloseEnough = false;
float boundingBoxSize = 0;
float closestToCenter = 10000.0;

https://lesporteslogiques.net/wiki/ 5/14

int i = 0, len = tracker.size(); i < len; i++
float bsize = tracker.getInstances i].getBoundingBox().getAreal();
//TO DO ---- add a method to check if the face is visible on screen
method
1: //Method 1 - biggest bounding box
bsize > boundingBoxSize && bsize > minFaceArea
boundingBoxSize = bsize;
mainFaceID = i;
isCloseEnough = true;

2: //Method 2 - closest to center
ofVec2f toCenter = ofVec2f(ofGetWidth() * 0.5, ofGetHeight() * 0.5) -
tracker.getInstances i].getBoundingBox().getCenter();

float dToCenter = toCenter.length();
bsize > minFaceArea && dToCenter < closestToCenter
closestToCenter = dToCenter;
mainFaceID = i;
isCloseEnough = true;

rajouter la possibilité de passer d’'une méthode a I'autre dans I'UI

o Par défaut, dans I'exemple qui sert a détecter les sourires, seul le premier visage de la liste des visages traqués est
évalué, donc seulement le visage qui était traqué depuis le plus longtemps sans interruption (cf. probleme vu
précédemment entre différence entre index et label). Pour résoudre ce probléme, il faut modifier la fonction
makeSample (qui détecte les sourires) pour prendre en argument I'id du visage que I'on veut détecter, retourné par
notre fonction findMainFacelID.

sample_type ofApp::makeSample(int id
auto outer = tracker.getInstances id].getLandmarks().getImageFeature(ofxFaceTracker2Landmarks::0UTER MOUTH);
auto inner = tracker.getInstances()[id].getLandmarks().getImageFeature(ofxFaceTracker2Landmarks::INNER_MOUTH);
auto lEye = tracker.getInstances()[id].getLandmarks().getImageFeature(ofxFaceTracker2Landmarks::LEFT_EYE);
auto rkEye = tracker.getInstances id|.getlLandmarks().getImageFeature(ofxFaceTracker2Landmarks: :RIGHT EYE);

e Sipar la suite il y a un besoin de détecter plusieurs utilisateurs, il faudrait exécuter la function make_sample sur tous
les visages captés pour détecter leur sourire. Il faudrait également revoir la méthode de lissage des données du face
landmark qui ne fonctionne que pour un seul visage.

Quelques ajustements :

e rajout d'une fonction qui vérifie si il y a un utilisateur devant la webcam

bool ofApp::isFaceCaptured
tracker.size()>0 && isCloseEnough
true;

false;

* mettre les valeurs de “sourire” a 0 quand aucun utilisateur n’est présent.

tracker.update(webcam) ;

findMainFacelID (detectionMethod);
isFaceCaptured
// Run the classifiers and update the filters on the face
bigSmileValue.update(learned functions|[0] (makeSample(mainFaceID ;
smallSmileValue.update(learned_functions[1] (makeSample(mainFaceID ;
oValue.update(learned_functions|2] (makeSample (mainFaceID ;
neutralValue.update(learned_functions|[3] (makeSample(mainFaceID ;

bigSmileValue.clear(0.0);
smallSmileValue.clear(0.0);
oValue.clear(0.0);
neutralValue.clear(0.0);

e adaptation du programme a plusieurs résolution et ratio d'écran. En plus de cela il faut inverser I'image sur I'axe
horizontal pour créer un effet “miroir”. Pour cela j'effectue une inversion de I'axe horizontal + une mise a I'échelle
par rapport a la hauteur de la fenétre + un offset horizontal pour garder le centre de la captation au centre de la

https://lesporteslogiques.net/wiki/ 6/14

fenétre.

void ofApp::drawHead(vector<ofVec2f>& head, vector<ofVec2f>& mappedHead, int index
float scaleY = ofGetHeight() * 1.0/webcamH;
float offsetX = (ofGetWidth * 0.5) - (scaleY * webcamW * 0.5);
int i = 0, len = head.size(); i<len; i++

head[i] = head[i] * smooth + tracker.getInstances()[index].getLandmarks().getImagePoints()[i] * (1.0 - smooth);
//scale to screen size (based on screen height) + offset to center the faces
mappedHead[i] = ofVec2f(head[i].x * scaleY * -1.0 + ofGetWidth - offsetX, head[il.y * scaleY);
ofDrawCircle(mappedHead[il.x, mappedHead[il.y, radius * scaleY);

e Quand un visage n’est plus capté, les landmarks disparaissent brutalement. Pour résoudre ce probléme je teste
plusieurs solution et finalement je décide de réunir les points au centre de I'écran quand aucun visage n’est capté.
En plus de cela, avec I'effet du filtre de lissage, les clignotements d’'image quand le traqueur perd le visage qq
frames ne sont plus présents.

void ofApp::drawWait(vector<ofVec2f>& head, vector<ofVec2f>& mappedHead
float scaleY = ofGetHeight * 1.0/webcamH;

float offsetX = (ofGetWidth * 0.5) - (scaleY * webcamW * 0.5);
float extraSmooth = 0.99;
int i = 0, len = mappedHead.size(); i<len; i++

head[i] = ofVec2f(head[il.x * extraSmooth + 320.0 * (1.0 - extraSmooth), head[il.y * extraSmooth + 240.0 * (1.0 - extraSmooth)); //
temp -> need to be change based on the webcam resolution

mappedHead[i] = ofVec2f(head[i].x * scaleY * -1.0 + ofGetWindowWidth - offsetX, head[il.y * scaleY);

ofDrawCircle(mappedHead|[i].x, mappedHead[i].y, radius * scaleY);

e Rajout d’'un debug mode. Pour le moment, le debug mode affiche I'image captée par la webcam en arriere-plan.

debugMode

// Draw webcam

float scaleY = ofGetHeight * 1.0 / webcamH;

float offsetX = (ofGetWidth * 0.5) - (scaleY * webcamW * 0.5

webcam.draw(webcam.getWidth() * scaleY + offsetX , 0, -webcam.getWidth() * scaleY, webcam.getHeight() * scaleY);
// Draw debug tracker landmarks

//tracker.drawbDebug();

// Draw estimated 3d pose

//tracker.drawDebugPose();

Scénario et comportement de I’automate

Définition de plusieurs états possibles pour I'automate a I'aide de switch case :

qql arrive alors que le robot est inactif -> il se réveille quand il détecte un visage

gql part - au bout de X secondes sans détecter de visage le robot devient inactif
inaction - il réalise des actions tous les x secondes tant qu'il ne détecte pas de visage
joue au jeu - il détecte les sourires (big, small, O, neutral)

Echange de données entre le robot et I'application de détection de visage.

Premier test avec le protocole OSC : échange entre le programme et une application processing qui tourne sur une autre
machine. Envoi et réception de donnée ok - dans le programme besoin de préciser I'adresse ipv4 de la machine recevant
les données ainsi qu’un port sur lequel envoyer et recevoir ces données. Pour le moment les données OSC sont envoyées en
continu. Pour la suite, il est possible d’envisager que les données soient envoyées uniquement si leur valeur a changé depuis
le dernier envoi.

void ofApp::setup

sender.setup(host, PORT);

// listen on the given port

ofLog << "listening for osc messages on port " << PORT;
receiver.setup(PORT);

void ofApp::update

isFaceCaptured
float posX = tracker.getInstances()[mainFaceID].getBoundingBox().getCenter().x;
float posY = tracker.getInstances mainFacelID]|.getBoundingBox().getCenter().y;
int isSmiling = 0;

playerSmile != neutralSmile

isSmiling = 1;

https://lesporteslogiques.net/wiki/ 7/14

float scaleY = ofGetHeight * 1.0/webcamH;

float offsetX = (ofGetWidth() * 0.5) - (scaleY * webcamW * 0.5);
offsetX > 0
posX = posX * scaleY * -1.0 + ofGetWidth - offsetX) - offsetX) / (ofGetWidth - (2.0 * offsetX
posX = (posX * scaleY * -1.0 + ofGetWidth - offsetX) / ofGetWidth();

posX = ofClamp(posX, 0.0, 1.0);
posY = posY * scaleY / ofGetHeight();
ofx0scMessage m;
m.setAddress("/posx");
m.addFloatArg(posX);
sender.sendMessage(m, false);
ofx0scMessage n;
n.setAddress("/posy");
n.addFloatArg(posY);
sender.sendMessage(n, false);
ofx0scMessage o;
o.setAddress("/smile");
o.addFloatArg(isSmiling);
sender.sendMessage (o, false);

ofx0scMessage m;
m.setAddress("/posx");
m.addFloatArg(-1.0);
sender.sendMessage(m, false);
ofx0scMessage n;
n.setAddress("/posy");
n.addFloatArg(-1.0);
sender.sendMessage(n, false);
ofx0scMessage o;
o.setAddress("/smile");
0.addFloatArg(0.0);
sender.sendMessage(o, false);

int isSpeaking = 0;
robotVoice.isThreadRunning
isSpeaking = 1;

ofx0scMessage m;
m.setAddress("/speak");
m.addFloatArg(isSpeaking);
sender.sendMessage(m, false);

Au lancement du programme ajout d’'une demande de I'adresse ipv4 du robot.

void ofApp::setup

askIP

cout << "enter robot ipv4 adress : ";
cin >> host;

cout << "My Robot ip is: " << host << endl;

Interface utilisateur

Rajouter I'addon ofxGui avec le project generator, qui permet d'avoir une interface utilisateur pour modifier des variables

pdt que I'application fonctionne. Il est possible d’enregistrer les parametres modifiés.

// ofApp::setup()
gui.setup();
gui.add(radius.setup("radius", 1.6, 0.2, 10.0));
gui.add(smileThreshold.setup("Smile Threshold", 0.42, 0.01, 1.0
gui.add(minFaceArea.setup("Minimum head size", 4000.0, 0.0, 40000.0));
gui.add(detectionMethod.setup("Detection Method", 1, 1, 2));
gui.add(debugMode.setup("Debug Mode", false));
// ofApp::draw()
displayUI
gui.draw

Ajout de raccourci clavier pour afficher I'ui qui servira au débogage.

e ‘i’ pour afficher les performances et les valeurs de ‘sourire’

e ‘U’ pour afficher les variables ajustables (taille minimum de téte détecté, ...) et d'une option pour afficher le mode

débogage (afficher I'image de la webcam en arriére plan, ...)
e ‘f’ pour passer I'application en mode fullscreen.

void ofApp::keyReleased(int key

https://lesporteslogiques.net/wiki/

8/14

key

e e
displayUI = !displayUI;

displayUI) ? ofShowCursor : ofHideCursor
it 'I':
displayInfo = !displayInfo;
e '‘Fre
ofToggleFullscreen();

’

Audio

Lire des fichiers sons en fonction des différents états du robot. Pour cela il y a la possibilité d’utiliser un ou plusieurs objets
ofSoundPlayer. Si on en utilise qu’un seul, il faut charger en mémoire a la volée chaque fichier son et de ce fait les sons
ne peuvent pas se superposer. Si on utilise plusieurs objets ofSoundPlayer, les sons peuvent se superposer et I'on a
besoin de moins de puissance machine mais cela requiert une utilisation plus élevé de la mémoire.

// ofApp.h
ofSoundPlayer botSound;
map<string, string> soundFile;

// ofApp.cpp
void ofApp::setup

soundFile.insert(make pair("welcome", "1085.mp3"));
soundFile.insert(make_pair("bored", "Violet.mp3"));
soundFile.insert(make pair("bye", "synth.wav"));

void ofApp::playSound(string name
botSound.unload();
botSound.load(soundFile.find(name)->second);
botSound.play();

Premier test avec un seul ofSoundPlayer - résultat satisfaisant.

Réglage de la webcam

Si jamais il y a plusieurs webcam sur la machine il faut pouvoir sélectionner celle que I'on veut utiliser (par exemple une
webcam interne d’un laptop + une webcam usb). Pour cela, au lancement du programme, il faudrait lister toutes les
caméras connectées a la machine et demander laquelle utiliser. Le plus simple pour cela et d’avoir un terminal externe au
lancement du programme et de faire des demandes avec cin et cout. Quand on utilise Visual Studio le lancement d’un
terminal ce fait par default a I'ouverture du programme. Dans notre cas, on utilise Qtcreator et il faut aller dans I'onglet
Projects - Build and run cliquer sur Run - Exécuter et cocherla case Run in terminal.

// Webcam and face tracker setup
int deviceld = 0;
'webcam.isInitialized

webcam. listDevices();

cout << "Enter device ID for webcam (0 if only 1 webcam) :";
cin >> deviceld;

webcam.setDeviceID(deviceld);

webcam.initGrabber(webcamW, webcamH);

Probléeme : la webcam freeze de temps en temps. Comme solution je propose de réinitialiser la webcam si pdt 120 cycles le
programme ne recoit plus d’'images en provenance de la webcam.

webcamReinitTimer++;
webcamReinitTimer > 120.0 // arbitrary value (120.0 is ~2s at 60 fps)
webcam.close();
webcam.setDeviceID
webcam.initGrabber (webcamW, webcamH);
cout<<"webcam reinitialized ";

Nouveau probleme : je n'ai pas pu tester la solution parce que je n'ai pas réussi a reproduire le bug.

Probléme : clignotement de I'image captée par la webcam due a la fréquence des éclairages (effet de flicker, éclairage 50hz
et webcam 60hz par défaut). Solution : régler la caméra sur une fréquence de 50hz. Plusieurs solutions, avec une interface

https://lesporteslogiques.net/wiki/ 9/14

type guvcview ou en ligne de commande avec v4I2.

v412-ctl —set-ctrl=power line frequency=1

Test avec guvcview pour régler I'image webcam. Problemes de captation liés a la capture vidéo. Image trop sombre,
clignotement de I'image. guvcview permet de modifier les réglages de la webcam, qui restent actifs quand on lance
I'application. Probléme : les paramétres se réinitialisent quand on redémarre I'ordinateur ou quand la webcam est
débranchée/rebranchée.

Principaux réglages a modifier avec guvcview avant de lancer le programme : dans le panneau video control changer la
sortie caméra en YUY puis dans les réglages de I'image restreindre la fréquence de rafraichissement de la webcam a 50
hz et gérer le gain et I'exposition.

Automatisation du réglage des paramétres de la webcam quand on la branche

Pas vraiment s{r de ce que je fait dans cette section, a ne pas reproduire chez vous !
which bash
fusr/bin/bash Créer un script pour régler la caméra.

#!usr/bin/bash
Vv4l12-ctl \
--set-ctrl=power_line frequency=1

Rendre le script executable

sudo chmod +x /home/linuxquimper/openframeworks v0.11.2/apps/myApps/dlibFaceTrackerTEST/webcam_startup_param.sh
Lancer le script quand on branche la caméra. Commande lusb pour trouver I'ID de notre périphérique
Bus 001 Device 008: ID 1415:2000 Nam Tai E&E Products Ltd. or OmniVision Technologies, Inc. Sony Playstation Eye
Aller dans /etc/udev/rules.d et créer un fichier rule

sudo touch ps3_webcam_rule.rules

Y rajouter

ACTION=="add", SUBSYSTEM=="usb", ATTR{idVendor}=="1415", ATTR{idProduct}=="2000",
RUN+="/home/linuxquimper/openframeworks v0.11.2/apps/myApps/dlibFaceTrackerTEST/webcam startup param.sh"

puis

sudo service udeV restart

tail -f /var/log/syslog

Le script fonctionne seul mais ne se déclenche pas quand la webcam se connecte. Je laisse tomber ce probléme pour le
moment.

Créer un exécutable et régler les paramétres webcam au lancement

Idée : créer un script qui fait les réglages caméra et lance le programme. Premierement il faut rendre notre programme
exécutable

sudo chmod +x /home/linuxquimper/openframeworks v0.11.2/apps/myApps/dlibFaceTrackerTEST/bin/dlibFaceTrackerTEST

Créer un script et le rendre executable avec sudo chmod +x

#!/usr/bin/bash
v412-ctl --set-ctrl=power_line frequency=1
/home/linuxquimper/openframeworks_v0.11.2/apps/myApps/dlibFaceTrackerTEST/bin/dlibFaceTrackerTEST start

Ca ne fonctionne pas ! A voir pour plus tard.

https://lesporteslogiques.net/wiki/ 10/14

Synthése vocale

Test avec espeak (I'installation de svoxpico ne fonctionne pas)

sudo apt install espeak

Dans I'application, création d’une fonction qui lance espeak. Pour le moment j'utilise espeak en python plutét que
directement en C++ - plus d’exemples et plus simple a mettre en place pour le moment.

Probléeme : le programme stoppe son execution pdt la synthése vocal.

Solution : lancer I'execution de eSpeak sur un nouveau thread. Creation d'une classe qui va hériter de la classe ofThread
d'openframeworks qui permet d’executer des fonctions sur un nouveau thread.

// textToSpeech.h
#pragma once
#include "ofMain.h"

class textToSpeech: public ofThread

public:
textToSpeech();
void say(string text);
void custom(string pitch, string speed, string amplitude, string lg, string tone);
void restore();

private:
void threadedFunction();
string text;
string initialCommand = "espeak -p 60 -v mb/mb-fr4";
string customCommand;

// textToSpeech.cpp
#include "textToSpeech.h"

textToSpeech: :textToSpeech
this->initialCommand = "espeak -p 99 -s 80 -a 100 -v mb/mb-frl+f4";
this->customCommand = this->initialCommand;

void textToSpeech::say(string t
// Play text as speech with the eSpeak software
this->text = t;
this->startThread();

void textToSpeech::restore
this->customCommand = this->initialCommand;

void textToSpeech::custom(string pitch, string speed, string amplitude, string lg, string tone
this->customCommand = "espeak -p " + pitch + " -s " + speed + " -a " + amplitude+ " -v "+ 1lg + "+" + tone;

void textToSpeech::threadedFunction
// Defines what's going to be executed while the thread is running
string command = this->customCommand;
command = command + " \"" + text + "\"";
system(command.c_str

Installation de MBROLA pour une synthése vocale plus réaliste.

sudo apt-get install git make gcc

git clone https://github.com/numediart/MBROLA.git
cd MBROLA

make

sudo cp Bin/mbrola /usr/bin/mbrola

Télécharger les modéles de voix sur https://github.com/numediart/MRBOLA-voices et les ajouter dans le dossier
usr/share/mbrola/xxN ou xxN est le nom du fichier (ex : pour le fichier frl le placer dans usr/share/mbrola/frl)

sudo mkdir
sudo cp -R /home/linuxquimper/Téléchargements/mbrola_voices/fr4 /usr/share/mbrola/fra

Tous les fichiers ne fonctionnent pas sur debian.

Ok - frl fr4 enl ptl Ne fonctionnent pas - fr2 fr3 fr5 bzl cnl

https://lesporteslogiques.net/wiki/ 11/14

Reconnaissance vocale

L'idée est de capter des phrases pour que le robot les répete. Pour cela je vais essayé d’enregistrer les voix dans un fichier
texte qui sera ensuite lu par le programme avec espeak.

Utilisation de vosk (pour l'installation voir le tuto)

Téléchargement et dézippage du modéle vosk-model-small-fr-pguyot-0.3 dans un dossier models.
Premier test avec test _microphone. py, dispo sur le wiki, pour transcrire de I'audio dans un fichier texte.
Lister les périphériques

Python3 test microphone.py -1

Puis pour exécuter le fichier test_microphone.py:

python3 test _microphone.py -f transcription.txt -m /home/linuxquimper/models/vosk-model-small-fr-pguyot-0.3 -d 6 -s 10.0
Ca fonctionne.
Modification du script :

e pour tout écrire sur une seule ligne

o pour effacer le contenu du fichier texte a chaque enregistrement

e pour que le script se termine automatiquement au bout de x secondes. (pour enregistrer 5 secondes de texte par
exemple).

pavucontrol pour accéder aux parametres de contréle de I'entrée audio.

#!/usr/bin/env python3

argparse
0s

queue

sounddevice sd
vosk

sys

time

q = queue.Queue

int_or_str(text):
"""Helper function for argument parsing."""

int(text
ValueError:
text

callback(indata, frames, time, status):
"""This is called (from a separate thread) for each audio block."""
status:
status, file=sys.stderr
g.put(bytes(indata

parser = argparse.ArgumentParser(add_help=False
parser.add_argument
'-1', '--list-devices', action='store true’
help='show list of audio devices and exit'
args, remaining = parser.parse known args
args.list devices:
sd.query_devices
parser.exit(0
parser argparse.ArgumentParser
description=__doc_
formatter_class=argparse.RawDescriptionHelpFormatter
parents=[parser
parser.add argument
'-f', '--filename', type=str, metavar='FILENAME'
help='text file to store transcriptions'’
parser.add _argument
‘-m', '--model', type=str, metavar='MODEL PATH'
help='Path to the model’
parser.add_argument
'-d', '--device', type=int_or_str
help='input device (numeric ID or substring)'’
parser.add _argument
'-s '--seconds', type=float
help="'number of seconds to record'
parser.add_argument

https://lesporteslogiques.net/wiki/ 12/14

https://lesporteslogiques.net/wiki/ressource/logiciel/vosk/start
https://lesporteslogiques.net/wiki/ressource/logiciel/vosk/start

-r '--samplerate', type=int, help='sampling rate’
args parser.parse_args(remaining

args.model None:
args.model "model"
os.path.exists(args.model):

"Please download a model for your language from https://alphacephei.com/vosk/models"
"and unpack as 'model' in the current folder."

parser.exit (0

args.samplerate None:

device_info = sd.query devices(args.device, 'input'

soundfile expects an int, sounddevice provides a float:

args.samplerate = int(device infol'default samplerate’

args.seconds None:
time limit = 6.0

time_limit = args.seconds
model vosk.Model (args.model
args.filename:
dump_fn = open(args.filename, "a+"
dump_fn.truncate(0
dump_fn = None

start_time = time.time

sd.RawInputStream(samplerate=args.samplerate, blocksize 1024, device=args.device, dtype='intl6’
channels=1, latency='high', callback=callback):

"#'* 80
'Press Ctrl+C to stop the recording'
"#'* 80

rec = vosk.KaldiRecognizer(model, args.samplerate

True:
data = q.get
rec.AcceptWaveform(data):
r = eval(rec.Result
t ri"text"

t:
t
dump_fn None len(t 5:
dump_fn.write(t+' '
timer = time.time - start_time

timer > time limit:

save the sentence spoke while exiting
r = eval(rec.Result

t ri"text"

t:
t
dump_fn None len(t 5:
dump_fn.write(t+' '
exit
‘\nDone"
parser.exit(0
sys.exit
KeyboardInterrupt:
‘\nDone'
parser.exit(0
Exception e:
parser.exit(type(e)._ name__ + ': ' + str(e

Le robot enregistre constamment ce qu'il entend par bloc de x secondes et va répéter des phrases qu'il a entendu de
maniére aléatoire. Quelques ajustements a faire mais le concept fonctionne.

// speechToText.h
#pragma once
#include "ofMain.h"

class speechToText: public ofThread

public:
speechToText();
void listen();
string getText();
string deviceID = "6";
string duration = "5.0"; //in seconds

private:
void threadedFunction();
string recordedLine;
vector<string> recordedLines;
int iterateur = 0;
int maxNb = 10;
bool isRandom = false;

https://lesporteslogiques.net/wiki/ 13/14

// speechToText.cpp
#include "speechToText.h"

speechToText: :speechToText

this->recordedLines.push back("Blablablablabla");

void speechToText::listen
this->startThread

string speechToText::getText
!isRandom
isRandom = true;
this->recordedLines|this->iterateur];

int rand = (int)ofRandom(this->recordedLines.size ; //value btw 0 and maxNb-1
this->recordedlLines|rand];

void speechToText::threadedFunction
// defines what's going to be executed while the thread is running

cout << "Recording user : START" << endl;

string command = "python3 /home/linuxquimper/openframeworks v0.11.2/apps/myApps/dlibFaceTrackerTEST/bin/data/test _microphone.py -f
/home/linuxquimper/openframeworks v0.11.2/apps/myApps/dlibFaceTrackerTEST/bin/data/transcription.txt -m /home/linuxquimper/models/vosk-
model-small-fr-pguyot-0.3 -d " + this->deviceID + " -s " + this->duration;

system(command.c str H

cout << "Recording user : FINISH" << endl;

ifstream in;

in.open("/home/linuxquimper/openframeworks_v0.11.2/apps/myApps/dlibFaceTrackerTEST/bin/data/transcription.txt");

'in.eof
getline(in, recordedLine);

in.close();
this->recordedLine != ""
recordedLines.size() < maxNb
recordedLines.push back(recordedLine);

this->recordedLines|this->iterateur| = recordedLine;

this->iterateur = (this->iterateur + 1) % this->maxNb;
isRandom = false;

cout << "RecordedLine = "<< recordedLine << endl;

Pour selectionner le micro qu’on utilise on rajoute dans le setup de ofApp.cpp:

string command = "python3 data/test microphone.py -1";
system(command.c str

cout << "Choose audio input device: ";

cin >> robotEars.devicelD;

Quelques réglages pour le futur

Refonte du systéme d'états pour le bot

Interaction avec I'utilisateur

Améliorer la captation du visage

Phrases qui s’enchainent

Amélioration de la classe textToSpeech pour la rendre plus modulable.

Journal

Le journal est tenu sur la page téte animatronique

Article extrait de : https://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : https://lesporteslogiques.net/wiki/projets/barbichette/start
Article mis a jour: 2025/11/18 18:56

https://lesporteslogiques.net/wiki/ 14/ 14

https://lesporteslogiques.net/wiki/openatelier/projet/tete_animatronique#journal
https://lesporteslogiques.net/wiki/
https://lesporteslogiques.net/wiki/projets/barbichette/start

	Barbichette
	Prototype v0 / juin 2023
	Mise en route de l'installation

	Installation d'un ordi pour la reconnaissance faciale
	Préparation d'un prototype de code
	Info matériel capture vidéo
	Créer un projet avec le project generator
	Détection de visage
	Test avec la méthode Haar Cascade :
	Test avec la méthode des face landmarks
	Premier test avec l’addon ofxFaceTracker2
	étape 1
	étape 2
	étape 3
	étape 4
	étape 5 – détection de sourire

	version d’OpenGl
	Développement du logiciel de détection de visage pour le projet barbichette
	Les landmarks
	Captation des visages

	Quelques ajustements :
	Scénario et comportement de l’automate
	Échange de données entre le robot et l’application de détection de visage.
	Interface utilisateur
	Audio
	Réglage de la webcam
	Automatisation du réglage des paramètres de la webcam quand on la branche
	Créer un exécutable et régler les paramètres webcam au lancement
	Synthèse vocale
	Reconnaissance vocale
	Quelques réglages pour le futur

	Journal

