WIKI Les Portes Logiques
Adresse de l'article : https://lesporteslogiques.net/wiki/recherche/datamoshing/start
Article mis a jour le : 2021/05/12 09:32 / Imprimé le 2026/02/16 02:24

Datamoshing

Présentation

Le datamoshing est I'art et la maniere d'utiliser délibérément les artefacts visuels issus d'erreurs de compression vidéos
dans un visée artistique.

La méthode "classique"
Préparation

Le format .avi est le plus résilient, et donc le plus propice a la corruption. Sa structure est connue et il est plus facile de
s'attaquer a un seul format de fichier plut6t que de vouloir tripatouiller tous les formats a I'aveugle. Il faudra donc convertir
votre vidéo au format avi grace a I'outil en ligne de commande ffmpeg.

Sous Linux on peut I'installer avec la commande:
$ sudo apt install ffmpeg
Puis la conversion se fait par la commande:

$ ffmpeg -i video source.mp4 -qscale 0 video convertie.avi

Transformation

Finalisation (Baking)

https://lesporteslogiques.net/wiki/ 1/4

https://www.youtube-nocookie.com/embed/8_Xhu9Vx5XM
https://www.youtube-nocookie.com/embed/8_Xhu9Vx5XM
https://lesporteslogiques.net/wiki/recherche/datamoshing/start

Et pourquoi pas en temps réel ?
Mode 1

Les pixels de couleur (I'image de fond) est mise-a-jour a intervalle réguliere (définit par la constante REFRESH_INTERVAL)
et le masque de déplacement est mis-a-jour en continue. C'est le mode qui se rapproche le plus de I'effet “bloom” qu'on
peut obtenir en datamoshing classique (par corruption de fichier avi). Pour obtenir un résultat au plus pres de I'effet original,
il faudrait calculer les vecteurs du masque de déplacement en fonction du déplacement réel des pixels d'une image a
I'autre. On calculerait ainsi un P-Frame, qu'on viendrait ensuite appliquer sur notre image de fond. Par simplicité, dans le
code ci-dessous, le masque du déplacement est calculé en fonction de la couleurs des pixels du flux vidéo. Le canal rouge
définit le déplacement horizontal et le canal vert définit le déplacement vertical.

Mode 1 (cliquer pour afficher le code)

datamoshing_1.pde

processing.video.*

//

// PARAMETERS

//

int REFRESH_INTERVAL // in millisecs
float START_DISPLACEMENT

float SPEED

boolean INVERT_COLORS = false

Capture video

PVector vectorMap
PImage display

PImage source_img

int source_x, source_y
int index

float amp

int last_update

void setup
size ,
video Capture , width, height
video.start
video.available
delay

video. read

vectorMap PVector|video.pixels.length
updateDisplacementMap(vectorMap, video
display createImage(width, height, RGB
source_img video.copy

amp = START_DISPLACEMENT

last_update = millis

void updateDisplacementMap(PVector[] vector_map, PImage map_img
map_img.loadPixels
float x_off, y off
int j j<height; j
int i i<width; i
index = i + width*j
color displacementPix = map_img.pixels[index
// Use red channel for horizontal displacement
// and green channel for vertical displacement

x_off displacementPix OxFF
y_off displacementPix OxFF
vector_map|index PVector(x_off, y off
void draw
video.available
video. read
updateDisplacementMap(vectorMap, video
millis last_update > REFRESH_INTERVAL

source_img = video.copy
source_img.loadPixels
last_update = millis

amp = START_DISPLACEMENT

index
int j j<display.height; j

https://lesporteslogiques.net/wiki/ 2/4

https://lesporteslogiques.net/wiki/_export/code/recherche/datamoshing/start?codeblock=0

int i=0; i<display.width; i
source_x round (amp * vectorMap|index].x float(i
source_y round(amp * vectorMapl/index].y float(j
source_x 0
source_x display.width
source_x display.width
source_x display.width
source y < 0
source_y display.height
source_y display.height
source_y display.height

display.pixels|index source_img.pixels[display.width*source y + source x

index

display.updatePixels
INVERT _COLORS) display.filter(INVERT

image(display, 0, 0

amp SPEED

void mouseClicked
saveFrame("pic-###.png"

Mode 2

Cette fois c'est le fond (les pixels de couleur) qui est continuellement mis-a-jour et le masque de déformation ne change que
de temps en temps. Vous pouvez ajuster la fréquence de mise-a-jour du masque de déformation en modifiant la constante
REFRESH_INTERVAL.

Mode 2 (cliquer pour afficher le code)

datamoshing_2.pde

processing.video.*

//

// PARAMETERS

//

int REFRESH_INTERVAL 14000 // in millisecs
float START_DISPLACEMENT 800.0

float SPEED 2.5

boolean INVERT COLORS = true

Capture video

PVector vectorMap
PImage display

PImage source_img

int source_x, source_y
int index

float amp

int last_update

void setup
size(1024, 768
video Capture , width, height

video.start
video.available
delay (100

video. read

vectorMap PVector[video.pixels.length
updateDisplacementMap (vectorMap, video
display = createImage(width, height, RGB
source_img = video.copy

amp = START_DISPLACEMENT

last_update = millis

void updateDisplacementMap(PVector[] vector_map, PImage map_img
map_img. loadPixels
float x_off, y off
int j=0; j<height; j
int i=0; i<width; i

index = i + width*j

color displacementPix = map_img.pixels[index

// Use red channel for horizontal displacement

// and green channel for vertical displacement

https://lesporteslogiques.net/wiki/ 3/4

https://lesporteslogiques.net/wiki/_export/code/recherche/datamoshing/start?codeblock=1

x_off 0.5 displacementPix 16 OxFF 255.0
y off 0.5 displacementPix 8 & OxFF 255.0

vector_map|index PVector(x_off, y off
void draw
video.available
video. read
millis last_update > REFRESH_INTERVAL

// Update vectorMap
updateDisplacementMap(vectorMap, video
last_update = millis

amp = START_DISPLACEMENT

index = 0
int j=0; j<display.height; j
int i=0; i<display.width; i
source_x round (amp vectorMap|index].x float(i
source_y round (amp vectorMap|index]|.y float(j
source_x 0
source_x display.width
source_x display.width
source_x display.width
source y < 0
source_y display.height
source_y display.height
source_y display.height

display.pixels|index video.pixels[display.width*source_y source_x
index

display.updatePixels
INVERT_COLORS) display.filter(INVERT

image(display, 0, 0

amp SPEED

void mouseClicked
saveFrame("pic-###.png"

Références

Un outil libre et ouvert, écrit en python, pour appliquer différentes techniques de datamoshing a un fichier vidéo :

https://github.com/itsKaspar/tomato
Un tutorial complet (en anglais) sur la théorie et I'utilisation du logiciel Avidemux pour le datamoshing :

http://forum.glitchet.com/t/tutorial-make-video-glitch-art-how-to-datamosh-in-plain-english/36

Article extrait de : https://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : https://lesporteslogiques.net/wiki/recherche/datamoshing/start
Article mis a jour: 2021/05/12 09:32

https://lesporteslogiques.net/wiki/

4/4

https://github.com/itsKaspar/tomato
http://forum.glitchet.com/t/tutorial-make-video-glitch-art-how-to-datamosh-in-plain-english/36
https://lesporteslogiques.net/wiki/
https://lesporteslogiques.net/wiki/recherche/datamoshing/start

	Datamoshing
	Présentation
	La méthode "classique"
	Préparation
	Transformation
	Finalisation (Baking)

	Et pourquoi pas en temps réel ?
	Mode 1
	Mode 2

	Références

