
WIKI Les Portes Logiques
Adresse de l'article : https://lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1575376004
Article mis à jour le : 2019/12/03 13:26 / Imprimé le 2026/02/16 05:49

https://lesporteslogiques.net/wiki/ 1 / 3

Datamoshing
La méthode "classique"

Et pourquoi pas en temps réel ?
Mode 1

Les pixels de couleur (l'image de fond) est mise-à-jour à intervalle régulière (définit par la constante REFRESH_INTERVAL)
et le masque de déplacement est mis-à-jour en continue. C'est le mode qui se rapproche le plus de l'effet “bloom” qu'on
peut obtenir en datamoshing classique (par corruption de fichier avi). Pour obtenir un résultat au plus près de l'effet original,
il faudrait calculer les vecteurs du masque de déplacement en fonction du déplacement réel des pixels d'une image à
l'autre. On calculerait ainsi un P-Frame, qu'on viendrait ensuite appliquer sur notre image de fond. Par simplicité, dans le
code ci-dessous, le masque du déplacement est calculé en fonction de la couleurs des pixels du flux vidéo. Le canal rouge
définit le déplacement horizontal et le canal vert définit le déplacement vertical.

import processing.video.*;

PARAMETERS int REFRESH_INTERVAL = 14000; float START_DISPLACEMENT = 0.0; float SPEED = 1.0; boolean
INVERT_COLORS = false; Capture video; PVector[] vectorMap; PImage display; PImage source_img; int source_x, source_y;
int index; float amp; int last_update; void setup() { size(1024, 768); video = new Capture(this, width, height); video.start();
while (!video.available()) { delay(100); } video.read(); vectorMap = new PVector[video.pixels.length];
updateDisplacementMap(vectorMap, video); display = createImage(width, height, RGB); source_img = video.copy(); amp =
START_DISPLACEMENT; last_update = millis(); } void updateDisplacementMap(PVector[] vector_map, PImage map_img) {
map_img.loadPixels(); float x_off, y_off; for (int j=0; j<height; j++) { for (int i=0; i<width; i++) { index = i + width*j; color
displacementPix = map_img.pixels[index]; Use red channel for horizontal displacement

 // and green channel for vertical displacement
 x_off = -0.5 + (displacementPix >> 16 & 0xFF) / 255.0;
 y_off = -0.5 + (displacementPix >> 8 & 0xFF) / 255.0;
 vector_map[index] = new PVector(x_off, y_off);
 }
}

}

void draw() {

if (video.available()) {
 video.read();
 updateDisplacementMap(vectorMap, video);
 if (millis() - last_update > REFRESH_INTERVAL) {
 source_img = video.copy();
 source_img.loadPixels();
 last_update = millis();
 amp = START_DISPLACEMENT;
 }
}

index = 0;
for (int j=0; j<display.height; j++) {
 for (int i=0; i<display.width; i++) {
 source_x = round(amp * vectorMap[index].x + float(i));
 source_y = round(amp * vectorMap[index].y + float(j));
 while (source_x < 0)
 source_x += display.width;
 while (source_x >= display.width)
 source_x -= display.width;
 while (source_y < 0)
 source_y += display.height;
 while (source_y >= display.height)
 source_y -= display.height;
 display.pixels[index] = source_img.pixels[display.width*source_y + source_x];
 index++;
 }
}
display.updatePixels();
if (INVERT_COLORS) display.filter(INVERT);

image(display, 0, 0);

https://lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1575376004

https://lesporteslogiques.net/wiki/ 2 / 3

amp += SPEED;

}

void mouseClicked() {

saveFrame("pic-###.png");

}

Mode 2

Cette fois c'est le fond (les pixels de couleur) qui est continuellement mis-à-jour et le masque de déformation ne change que
de temps en temps. Vous pouvez ajuster la fréquence de mise-à-jour du masque de déformation en modifiant la constante
REFRESH_INTERVAL.

Mode 2 (cliquer pour afficher le code)

datamoshing_2.pde

import processing.video.*;

//
// PARAMETERS
//
float START_DISPLACEMENT = 800.0;
float SPEED = 2.5;
int REFRESH_INTERVAL = 15000; // in milliseconds
boolean INVERT_COLORS = false;

Capture video;
PVector[] vectorMap;
PImage display;
PImage source_img;
int source_x, source_y;
int index;
float amp;
int last_update;

void setup() {
 size(1024, 768);
 video = new Capture(this, width, height);
 video.start();
 while (!video.available()) {
 delay(100);
 }
 video.read();
 vectorMap = new PVector[video.pixels.length];
 updateDisplacementMap(vectorMap, video);
 display = createImage(width, height, RGB);
 source_img = video.copy();
 amp = START_DISPLACEMENT;
 last_update = millis();
}

void updateDisplacementMap(PVector[] vector_map, PImage map_img) {
 map_img.loadPixels();
 float x_off, y_off;
 for (int j=0; j<height; j++) {
 for (int i=0; i<width; i++) {
 index = i + width*j;
 color displacementPix = map_img.pixels[index];
 // Use red channel for horizontal displacement
 // and green channel for vertical displacement
 x_off = -0.5 + (displacementPix >> 16 & 0xFF) / 255.0;
 y_off = -0.5 + (displacementPix >> 8 & 0xFF) / 255.0;
 vector_map[index] = new PVector(x_off, y_off);
 }
 }
}

void draw() {
 if (video.available()) {
 video.read();
 if (millis() - last_update > REFRESH_INTERVAL) {
 // Update vectorMap
 updateDisplacementMap(vectorMap, video);
 last_update = millis();
 amp = START_DISPLACEMENT;
 }

https://lesporteslogiques.net/wiki/_export/code/recherche/datamoshing/start?codeblock=0

https://lesporteslogiques.net/wiki/ 3 / 3

 if (INVERT_COLORS) video.filter(INVERT);
 }

 index = 0;
 for (int j=0; j<display.height; j++) {
 for (int i=0; i<display.width; i++) {
 source_x = round(amp * vectorMap[index].x + float(i));
 source_y = round(amp * vectorMap[index].y + float(j));
 while (source_x < 0)
 source_x += display.width;
 while (source_x >= display.width)
 source_x -= display.width;
 while (source_y < 0)
 source_y += display.height;
 while (source_y >= display.height)
 source_y -= display.height;

 display.pixels[index] = video.pixels[display.width*source_y + source_x];

 index++;
 }
 }
 display.updatePixels();
 image(display, 0, 0);

 amp += SPEED;
}

void mouseClicked() {
 saveFrame("pic-###.png");
}

Article extrait de : https://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : https://lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1575376004
Article mis à jour: 2019/12/03 13:26

https://lesporteslogiques.net/wiki/
https://lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1575376004

	Datamoshing
	La méthode "classique"
	Et pourquoi pas en temps réel ?
	Mode 1
	Mode 2

