WIKI Les Portes Logiques
Adresse de I'article : https://lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1576834830
Article mis a jour le : 2019/12/20 10:40 / Imprimé le 2026/02/16 05:49

Datamoshing

La méthode "classique"

Et pourquoi pas en temps réel ?
Mode 1

Les pixels de couleur (I'image de fond) est mise-a-jour a intervalle réguliere (définit par la constante REFRESH_INTERVAL)
et le masque de déplacement est mis-a-jour en continue. C'est le mode qui se rapproche le plus de I'effet “bloom” qu'on
peut obtenir en datamoshing classique (par corruption de fichier avi). Pour obtenir un résultat au plus prés de I'effet original,
il faudrait calculer les vecteurs du masque de déplacement en fonction du déplacement réel des pixels d'une image a
I'autre. On calculerait ainsi un P-Frame, qu'on viendrait ensuite appliquer sur notre image de fond. Par simplicité, dans le
code ci-dessous, le masque du déplacement est calculé en fonction de la couleurs des pixels du flux vidéo. Le canal rouge
définit le déplacement horizontal et le canal vert définit le déplacement vertical.

Mode 1 (cliquer pour afficher le code)

datamoshing_1.pde

import processing.video.*

//

// PARAMETERS

//

int REFRESH INTERVAL = 14000; // in millisecs
float START_DISPLACEMENT 0.0

float SPEED 1.0

boolean INVERT_COLORS = false

Capture video

PVector vectorMap
PImage display

PImage source_img

int source x, source y
int index

float amp

int last_update

void setup
size(1024, 768
video new Capture(this, width, height

video.start
while video.available
delay (100

video. read

vectorMap new PVector|video.pixels.length
updateDisplacementMap (vectorMap, video
display createImage(width, height, RGB
source_img = video.copy

amp = START_DISPLACEMENT

last_update = millis

https://lesporteslogiques.net/wiki/ 1/4

https://lesporteslogiques.net/wiki/_export/code/recherche/datamoshing/start?codeblock=0
https://lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1576834830

void updateDisplacementMap(PVector[] vector_map, PImage map_img
map_img.loadPixels
float x_off, y off
int j=0; j<height; j
int i=0; i<width; i
index = i + width*j
color displacementPix = map_img.pixels[index
// Use red channel for horizontal displacement
// and green channel for vertical displacement
x_off 0.5 displacementPix 16 & OxFF 255.0
y_off 0.5 displacementPix 8 & OxFF 255.0

vector_map|index PVector(x_off, y off
void draw
video.available
video. read
updateDisplacementMap(vectorMap, video
millis last_update > REFRESH_INTERVAL

source_img = video.copy
source_img.loadPixels
last_update = millis

amp = START_DISPLACEMENT

index 0
int j=0; j<display.height; j
int i=0; i<display.width; i
source_x round(amp * vectorMap|index].x float(i
source_y round(amp * vectorMap[index].y float(j
source x < 0
source_x display.width
source_x display.width
source_x display.width
source_y 0
source_y display.height
source_y display.height
source_y display.height

display.pixels[index source_img.pixels[display.width*source_y source_x

index

display.updatePixels
INVERT _COLORS) display.filter(INVERT

image(display, 0, 0

amp SPEED

void mouseClicked
saveFrame("pic-###.png"

Mode 2

Cette fois c'est le fond (les pixels de couleur) qui est continuellement mis-a-jour et le masque de déformation ne change que
de temps en temps. Vous pouvez ajuster la fréquence de mise-a-jour du masque de déformation en modifiant la constante
REFRESH_ INTERVAL.

Mode 2 (cliquer pour afficher le code)

datamoshing_2.pde

processing.video.*

//

// PARAMETERS

//

int REFRESH_INTERVAL = 14000 // in millisecs
float START_DISPLACEMENT = 800.0

float SPEED = 2.5

boolean INVERT COLORS = true

Capture video
PVector[| vectorMap
PImage display
PImage source img

https://lesporteslogiques.net/wiki/ 2/4

https://lesporteslogiques.net/wiki/_export/code/recherche/datamoshing/start?codeblock=1

int source x, source_y
int index

float amp

int last_update

void setup
size(1024, 768
video Capture , width, height

video.start
video.available
delay (100

video. read

vectorMap PVector|video.pixels.length
updateDisplacementMap(vectorMap, video
display createImage(width, height, RGB
source_img = video.copy

amp START_DISPLACEMENT

last update = millis

void updateDisplacementMap(PVector[] vector_map, PImage map_img
map_img.loadPixels
float x_off, y off
int j=0; j<height; j
int i=0; i<width; i
index = i + width*j
color displacementPix = map_img.pixels[index
// Use red channel for horizontal displacement
// and green channel for vertical displacement
x_off 0.5 displacementPix 16 & OxFF 255.0
y_off 0.5 displacementPix 8 & OxFF 255.0

vector_map|index PVector(x_off, y off
void draw
video.available
video. read
millis last update > REFRESH INTERVAL

// Update vectorMap
updateDisplacementMap(vectorMap, video
last_update = millis

amp START_DISPLACEMENT

index = 0
int j=0; j<display.height; j
int i=0; i<display.width; i
source_x round(amp * vectorMap|index|.x + float(i
source_y round(amp * vectorMapl/index].y float(j
source_x 0
source_x display.width
source_x display.width
source_x display.width
source_y 0
source_y display.height
source_y display.height
source_y display.height

display.pixels|index video.pixels[display.width*source_y + source x

index

display.updatePixels
INVERT COLORS) display.filter(INVERT
image(display, 0, 0

amp SPEED

void mouseClicked
saveFrame("pic-###.png"

Références

Un outil libre et ouvert, écrit en python, pour appliquer différentes techniques de datamoshing a un fichier vidéo.

https://github.com/itsKaspar/tomato

https://lesporteslogiques.net/wiki/

https://github.com/itsKaspar/tomato

Article extrait de : https://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : https://lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1576834830
Article mis a jour: 2019/12/20 10:40

https://lesporteslogiques.net/wiki/

4/4

https://lesporteslogiques.net/wiki/
https://lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1576834830

	Datamoshing
	La méthode "classique"
	Et pourquoi pas en temps réel ?
	Mode 1
	Mode 2

	Références

