
WIKI Les Portes Logiques
Adresse de l'article : https://lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1576842812
Article mis à jour le : 2019/12/20 12:53 / Imprimé le 2026/02/16 07:35

https://lesporteslogiques.net/wiki/ 1 / 4

Datamoshing

La méthode "classique"
Préparation

Le format .avi est le plus résilient, et donc le plus propice à la corruption. Sa structure est connue et il est plus facile de
s'attaquer à un seul format de fichier plutôt que de vouloir tripatouiller tous les formats à l'aveugle. Il faudra donc convertir
votre vidéo au format avi grâce à l'outil en ligne de commande ffmpeg'. Sous Linux on peut l'installer avec
la commande: $ sudo apt install ffmpeg ==== Transformation ==== ==== Finalisation (Baking) ====
===== Et pourquoi pas en temps réel ? ===== ==== Mode 1 ==== Les pixels de couleur (l'image de
fond) est mise-à-jour à intervalle régulière (définit par la constante REFRESH_INTERVAL) et le
masque de déplacement est mis-à-jour en continue. C'est le mode qui se rapproche le plus de
l'effet “bloom” qu'on peut obtenir en datamoshing classique (par corruption de fichier avi).
Pour obtenir un résultat au plus près de l'effet original, il faudrait calculer les vecteurs
du masque de déplacement en fonction du déplacement réel des pixels d'une image à l'autre. On
calculerait ainsi un P-Frame, qu'on viendrait ensuite appliquer sur notre image de fond. Par
simplicité, dans le code ci-dessous, le masque du déplacement est calculé en fonction de la
couleurs des pixels du flux vidéo. Le canal rouge définit le déplacement horizontal et le
canal vert définit le déplacement vertical.

Mode 1 (cliquer pour afficher le code)

datamoshing_1.pde

import processing.video.*;

//
// PARAMETERS
//
int REFRESH_INTERVAL = 14000; // in millisecs
float START_DISPLACEMENT = 0.0;
float SPEED = 1.0;
boolean INVERT_COLORS = false;

Capture video;
PVector[] vectorMap;
PImage display;
PImage source_img;
int source_x, source_y;
int index;
float amp;
int last_update;

void setup() {
 size(1024, 768);
 video = new Capture(this, width, height);
 video.start();
 while (!video.available()) {
 delay(100);
 }
 video.read();
 vectorMap = new PVector[video.pixels.length];

https://lesporteslogiques.net/wiki/_export/code/recherche/datamoshing/start?codeblock=0
https://lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1576842812

https://lesporteslogiques.net/wiki/ 2 / 4

 updateDisplacementMap(vectorMap, video);
 display = createImage(width, height, RGB);
 source_img = video.copy();
 amp = START_DISPLACEMENT;
 last_update = millis();
}

void updateDisplacementMap(PVector[] vector_map, PImage map_img) {
 map_img.loadPixels();
 float x_off, y_off;
 for (int j=0; j<height; j++) {
 for (int i=0; i<width; i++) {
 index = i + width*j;
 color displacementPix = map_img.pixels[index];
 // Use red channel for horizontal displacement
 // and green channel for vertical displacement
 x_off = -0.5 + (displacementPix >> 16 & 0xFF) / 255.0;
 y_off = -0.5 + (displacementPix >> 8 & 0xFF) / 255.0;
 vector_map[index] = new PVector(x_off, y_off);
 }
 }
}

void draw() {
 if (video.available()) {
 video.read();
 updateDisplacementMap(vectorMap, video);
 if (millis() - last_update > REFRESH_INTERVAL) {
 source_img = video.copy();
 source_img.loadPixels();
 last_update = millis();
 amp = START_DISPLACEMENT;
 }
 }

 index = 0;
 for (int j=0; j<display.height; j++) {
 for (int i=0; i<display.width; i++) {
 source_x = round(amp * vectorMap[index].x + float(i));
 source_y = round(amp * vectorMap[index].y + float(j));
 while (source_x < 0)
 source_x += display.width;
 while (source_x >= display.width)
 source_x -= display.width;
 while (source_y < 0)
 source_y += display.height;
 while (source_y >= display.height)
 source_y -= display.height;

 display.pixels[index] = source_img.pixels[display.width*source_y + source_x];

 index++;
 }
 }
 display.updatePixels();
 if (INVERT_COLORS) display.filter(INVERT);

 image(display, 0, 0);

 amp += SPEED;
}

void mouseClicked() {
 saveFrame("pic-###.png");
}

==== Mode 2 ==== Cette fois c'est le fond (les pixels de couleur) qui est continuellement mis-à-jour et le masque de
déformation ne change que de temps en temps. Vous pouvez ajuster la fréquence de mise-à-jour du masque de déformation
en modifiant la constante REFRESH_INTERVAL''.

Mode 2 (cliquer pour afficher le code)

datamoshing_2.pde

import processing.video.*;

//
// PARAMETERS
//
int REFRESH_INTERVAL = 14000; // in millisecs
float START_DISPLACEMENT = 800.0;
float SPEED = 2.5;
boolean INVERT_COLORS = true;

https://lesporteslogiques.net/wiki/_export/code/recherche/datamoshing/start?codeblock=1

https://lesporteslogiques.net/wiki/ 3 / 4

Capture video;
PVector[] vectorMap;
PImage display;
PImage source_img;
int source_x, source_y;
int index;
float amp;
int last_update;

void setup() {
 size(1024, 768);
 video = new Capture(this, width, height);
 video.start();
 while (!video.available()) {
 delay(100);
 }
 video.read();
 vectorMap = new PVector[video.pixels.length];
 updateDisplacementMap(vectorMap, video);
 display = createImage(width, height, RGB);
 source_img = video.copy();
 amp = START_DISPLACEMENT;
 last_update = millis();
}

void updateDisplacementMap(PVector[] vector_map, PImage map_img) {
 map_img.loadPixels();
 float x_off, y_off;
 for (int j=0; j<height; j++) {
 for (int i=0; i<width; i++) {
 index = i + width*j;
 color displacementPix = map_img.pixels[index];
 // Use red channel for horizontal displacement
 // and green channel for vertical displacement
 x_off = -0.5 + (displacementPix >> 16 & 0xFF) / 255.0;
 y_off = -0.5 + (displacementPix >> 8 & 0xFF) / 255.0;
 vector_map[index] = new PVector(x_off, y_off);
 }
 }
}

void draw() {
 if (video.available()) {
 video.read();
 if (millis() - last_update > REFRESH_INTERVAL) {
 // Update vectorMap
 updateDisplacementMap(vectorMap, video);
 last_update = millis();
 amp = START_DISPLACEMENT;
 }
 }

 index = 0;
 for (int j=0; j<display.height; j++) {
 for (int i=0; i<display.width; i++) {
 source_x = round(amp * vectorMap[index].x + float(i));
 source_y = round(amp * vectorMap[index].y + float(j));
 while (source_x < 0)
 source_x += display.width;
 while (source_x >= display.width)
 source_x -= display.width;
 while (source_y < 0)
 source_y += display.height;
 while (source_y >= display.height)
 source_y -= display.height;

 display.pixels[index] = video.pixels[display.width*source_y + source_x];

 index++;
 }
 }
 display.updatePixels();
 if (INVERT_COLORS) display.filter(INVERT);
 image(display, 0, 0);

 amp += SPEED;
}

void mouseClicked() {
 saveFrame("pic-###.png");
}

Références
Un outil libre et ouvert, écrit en python, pour appliquer différentes techniques de datamoshing à un fichier vidéo :

https://github.com/itsKaspar/tomato

https://github.com/itsKaspar/tomato

https://lesporteslogiques.net/wiki/ 4 / 4

Un tutorial complet (en anglais) sur la théorie et l'utilisation du logiciel Avidemux pour le datamoshing :

http://forum.glitchet.com/t/tutorial-make-video-glitch-art-how-to-datamosh-in-plain-english/36

Article extrait de : https://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : https://lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1576842812
Article mis à jour: 2019/12/20 12:53

http://forum.glitchet.com/t/tutorial-make-video-glitch-art-how-to-datamosh-in-plain-english/36
https://lesporteslogiques.net/wiki/
https://lesporteslogiques.net/wiki/recherche/datamoshing/start?rev=1576842812

	Datamoshing
	La méthode "classique"
	Préparation

	Références

