WIKI Les Portes Logiques
Adresse de I'article : https://lesporteslogiques.net/wiki/recherche/residence_corruption/corruption_litteraire
Article mis a jour le : 2019/10/09 13:05 / Imprimé le 2026/02/16 02:26

python, processing, poesie, glitch, gw

Corruption Littéraire

Lors de cette résidence j'ai voulu expérimenter la corruption sémantique de textes en remplacant certains mots par des
synonymes. Les synonymes sont récupérés dynamiquement a travers I'API du site http://thesaurus.altervista.org. Pourquoi
j'ai choisi ce site ? Ben les dictionnaires de synonymes en langue frangaise proposant une API ne courent pas les cyber-rues,
le choix a été rapide. Il faut noter que chaque API a ses propres regles de communication. Il devrait donc étre possible
d'utiliser le programme de corruption de texte avec un autre dictionnaire en ligne a condition d'adapter le programme aux
regles de la nouvelle API.

Le programme est composé de deux modules maladroitement intégrés ensemble (ca s'est fait a la va vite sans réelle vision
d'ensemble, et puis il y avait une tireuse avec biére a volonté...). Le premier module, écrit en Python, se charge de
récupérer les synonymes en lignes et de sauvegarder le texte corrompu dans un nouveau fichier. Le second module, en
Processing (Java), fait défiler les textes a I'écran, ajoute des effets de corruption graphique et fait régulierement appel au
premier module.

Qu'éclairait moelleusement ce soleil d
u aube,

Pailletant tout bouquet d‘une bourrasqu
e incendie.

sifflement argenti
Plus un décrépit tremblote sa gémissem
ent sempiternelle.

Lesquelles roses comme avant palpitent
; comme v1gnette

Le module de corruption de texte

Il peut s'utiliser de fagcon autonome, a condition d'avoir installé Python3 sur votre machine.
N'oubliez pas de remplacer la clé d'API du site http://thesaurus.altervista.org par votre propre clé (apres avoir crée votre
compte) dans la variable key.

Usage:

$ python3 textcorrupt.py fichier original fichier de sortie [nombre d'itérations]

ou nombre _d'itérations estle nombre (optionnel) de fois ou I'algorithme corrompra le texte (sachant que par défaut 2%
des mots sont modifiés a chaque itération).

Si le code est plus complexe qu'il ne devrait c'est parce qu'il utilise deux fichiers locaux de cache :

french filter out.txt pour conserver les mots qui ne seront jamais modifiés (mots pour lesquels le dictionnaire en
ligne renvoie une erreur mais vous pouvez également |'éditer manuellement pour rajouter vos mots a protéger).
syn_dict.txt pour conserver tous les mots, ainsi que leurs synonymes, pour lesquels une requéte a déja été envoyé au
dictionnaire en ligne.

Ces deux fichiers seront créés automatiquement a la premiere exécution du programme.

textcorrupt.py (cliquer pour afficher le code)

textcorrupt.py

requests
random
os.path
sys

syn_dict "syn dict.txt"
filter_out "french_filter out.txt"

endpoint "http://thesaurus.altervista.org/thesaurus/v1l"
key "a remplacer par votre clé personnnelle"

https://lesporteslogiques.net/wiki/ 1/5

https://lesporteslogiques.net/wiki/tag/python?do=showtag&tag=python
https://lesporteslogiques.net/wiki/tag/processing?do=showtag&tag=processing
https://lesporteslogiques.net/wiki/tag/poesie?do=showtag&tag=poesie
https://lesporteslogiques.net/wiki/tag/glitch?do=showtag&tag=glitch
https://lesporteslogiques.net/wiki/tag/gw?do=showtag&tag=gw
http://thesaurus.altervista.org
http://thesaurus.altervista.org
https://lesporteslogiques.net/wiki/_export/code/recherche/residence_corruption/corruption_litteraire?codeblock=0
https://lesporteslogiques.net/wiki/recherche/residence_corruption/corruption_litteraire

language = "fr FR"
output "json"

loadFilterQut(filename) :
filterOQut
os.path.isfile(filename):

open(filename, 'r' file:
line file.readlines
line:
filterOut.append(line.strip
filterOut

saveFilterQut(filename, filterOut):
open(filename, 'w' file:
word filterQut:
file.write(word+'\n'

loadSynDict(filename):
synDict = dict
os.path.isfile(filename):

open(filename, 'r' file:
line file.readlines
line:
words = line.split('\t'
synDict[words[0 list(map(cleanWord, words|[1:

synDict

saveSynDict(filename, synDict):

open(filename, 'w' file:
word synDict:
file.write(word
syn synDict[word]:

file.write('\t' + syn
file.write('\n'

getSynonyms (word, synDict, filterOut
word cleanWord (word
word synDict:
synDict[word

sys.stderr.write("Fetching synonym of '{}'...\n".format(word
url f"{endpoint}?word={word}&key={key}&language={language}&output={output}"
r requests.get(url

r.raise for_status
json r.json

synList = json["response"![0]["list"]|["synonyms"].split("]|
synList list(map(cleanWord, synList
synDict|word. lower synList

synList

sys.stderr.write("Synonym not found\n"
filterOut.append(word
None

sys.stderr.flush
chooseSynonym(word, synDict, filterOut
syns getSynonyms (word, synDict, filterOut
syns:
random.choice(syns
word

validate(word, filterOut):
len(word)>1 word.isalpha word.casefold filterOut

cleanWord (word
word.casefold().strip

decomposeWord (word) :

iStart = 0
iEnd = len(word
iEnd>0 word[iEnd-1].isalpha : iEnd -= 1
len(word)>2 word[1 "ty iStart=2

word[:iStart], word[iStart:iEnd], word[iEnd:

parseText(text, synDict, filterOut
lines text.split('\n’
corruptedLines

line lines:

https://lesporteslogiques.net/wiki/

words line.split
corruptedWords
word words:
prefix, radix, suffix = decomposeWord (word
The corruption probability is 0.2 for each word
random. random()<0.2 validate(radix, filterOut):
corruptedWord = chooseSynonym(radix, synDict, filterOut
Keep capital letters
word.istitle
corruptedword corruptedWord[0].upper() + corruptedWord[1:
corruptedWords.append (prefix+corruptedWord+suffix

Word is kept unchanged
corruptedWords.append (word
corruptedLines.append(' '.join(corruptedWords
‘\n'.join(corruptedLines

__name___ __main__ ":
sys.stderr.flush
synDict loadSynDict(syn_dict
filterOut = loadFilterOut(filter_out

iteration 1
len(sys.argv 3: iteration = int(sys.argv[3

text "
open(sys.argv|1l
text = file.read
i range(iteration):
text = parseText(text, synDict, filterOut

r' file:

Save to file
open(sys.argv|2
file.write(text

w' file:

saveSynDict (syn dict, synDict
saveFilterOut(filter_ out, filterOut

Le sketch Processing de présentation

Le programme est disponible en téléchargement sur GitHub.

J'ai recopié ici quelques passages intéressants et facilement applicables a d'autres sketches Processing pour glitcher 'image.
Il suffit ensuite d'appeler ces mémes fonctions, dans I'ordre que vous voulez, a la fin de la fonction draw.

Rectangles d'inversion de couleurs (cliquer pour afficher le code)

void glitchScreen(int n

// Paramétre 'n' : nombre de rectangles d'inversion a dessiner sur l'image
loadPixels
int i=0; i<n; i
int x0 int) random(width
int y0 int) random(height
int x1 int) min(x@+random(4, 200), width

int yl int) min(y@+random(4, 40), height
int y=y0; y<yl; y
int x=x0; x<x1; x
pixels[x + y*width ~pixels[x + y*width

updatePixels

dans une vie est amere,
Ce luguhre- afttention de _torminaicnn.

1 aspect K

Ici, balance de
plainfit,

0 b

gere,

Néanmoins de fragiles ™S Ecatan

n sinongoait

https://lesporteslogiques.net/wiki/ 3/5

https://github.com/gweltou/textGlitch

Pixelisation de I'écran (cliquer pour afficher le code)

// 4 boucles 'for' imbriqués, waouuuuuh ! Trop hardcooooooooore ;)

void pixelateScreen(int n
// Paramétre 'n' : degré de pixelisation (2 au minimum)
loadPixels
int y=0; y<height; y+=n
int x=0; x<width; Xx+=n
int yy=0; yy<n; yy+=1
int xx=0; xx<n; xx+=1
pixels [min (x+xx y+yy) “width, pixels.length-1 pixels|x+y*width

updatePixels

Décalage des canaux R et B (cliquer pour afficher le code)

void rbGlitch(int n
loadPixels
PImage buffer = createImage(width, height, RGB
buffer.loadPixels
int i=0; i<pixels.length; i

buffer.pixels|i pixels[i Oxffeeffoo
pixels[min(pixels.length-1, i+n Oxffoeoeff
pixels[max(0, i-n 0x00ff0000

buffer.updatePixels
image(buffer, 0, 0

me: swiis promené dans
-
ementt e solledll div ma

mowilTé
Rediem m'a B, i emsemile revw 1M

umile p)
2 wiigne mé ée plus des chadses de

‘eau e tmwjew

La derniere subtilité, et pas la moindre, se trouve dans les transformations géométriques appliquées aléatoirement et de
facon individuelle aux lettres. Il aurait sans doute été possible d'utiliser la fonction text de Processing aprées avoir modifié le
repere avec les fonctions translate, rotate ou scale mais ca aurait été une insulte a mon intelligence. Il faut savoir que
la fonction text, d'apparence si simple et innocente, cache en elle beaucoup de complexité. Je voulais également pouvoir
traiter beaucoup de lettres a I'écran et utiliser la fonction text pour chacune des lettres aurait été une abération
programmatique.

Moi ce que je cherche c'est la performance ! D'aucuns y verront la preuve que j'ai une petite bite, mais avant de sauter au
conclusions hatives permettez-moi de défendre mon penchant. Je vois une forme d'esthétique dans un code efficace,
optimisé sans étre obfusqué. Je considere cette démarche comme de I'élégance artistique. D'autres interpréteront cette
tendance comme de I'autisme, si ca les rassure. N'y aurait-il pas non plus dans cette recherche d'efficacité et de simplicité
une attention particuliére a la modération et a I'économie de ressource ? Pensez a I'énergie économisée lorsque la
recherche du synonyme d'un mot est conservée localement plutét que d'envoyer une nouvelle requéte par internet. Autiste

https://lesporteslogiques.net/wiki/ 4/5

écolo a petite bite. Chacun y verra ce qu'il veut...

i
A la agrégation af Ly léser toujours pé
tifle seul plaisir
Perdant lerche labo élnce obéie au pr
incipalemgnt sobre aveni re,
C tte ac roc nkst cachet une plaisant
dun esOlav? ge !
i

Mais au abattu commune, dans g t lacc
ablement, o

rdén u me,t pas saurait venir f

singulier“vrt aprés au arrondissement
]

Article extrait de : https://lesporteslogiques.net/wiki/ - WIKI Les Portes Logiques
Adresse : https://lesporteslogiques.net/wiki/recherche/residence_corruption/corruption_litteraire

Article mis a jour: 2019/10/09 13:05

https://lesporteslogiques.net/wiki/

https://lesporteslogiques.net/wiki/
https://lesporteslogiques.net/wiki/recherche/residence_corruption/corruption_litteraire

	Corruption Littéraire
	Le module de corruption de texte
	Le sketch Processing de présentation

